Advertisement

Enhanced particle self-ordering in a double-layer channel

  • Sheng Yan
  • Yuxing Li
  • Qianbin Zhao
  • Dan Yuan
  • Guolin Yun
  • Shi-Yang Tang
  • Weihua Li
Article
  • 173 Downloads

Abstract

In this work, a novel double-layer microfluidic device for enhancing particle focusing was presented. The double-layer device consists of a channel with expansion-contraction array and periodical slanted grooves. The secondary flows induced by the grooves modulate the flow patterns in the expansion-contraction-array (ECA) channel, further affecting the particle migration. Compared with the single ECA channel, the double-layer channel can focus the particles over a wider range of flow rate. Due to the differentiation of lateral migration, the double-layer channel is able to distinguish the particles with different sizes. Furthermore, the equilibrium positions could be modulated by the orientation of grooves. This work demonstrates the possibility to enhance and adjust the inertial focusing in an ECA channel with the assistance of grooves, which may provide a simple and portable platform for downstream filtration, separation, and detection.

Keywords

Double-layer channel Self-ordering Inertial microfluidics Fluid dynamics 

Notes

Acknowledgments

Dr. Sheng Yan is the recipient of the 2018 Endeavour Research Fellowship funded by the Australian Department of Education and Training. Dr. Shi-Yang Tang is the recipient of the Vice-Chancellor’s Postdoctoral Research Fellowship funded by the University of Wollongong.

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.

References

  1. M. Abbas, P. Magaud, Y. Gao, S. Geoffroy, Phys. Fluids 26, 136–157 (2014)CrossRefGoogle Scholar
  2. E.S. Asmolov, J. Fluid Mech. 381, 63–87 (1999)CrossRefGoogle Scholar
  3. Y. Chen, A.A. Nawaz, Y. Zhao, P.H. Huang, J.P. Mccoy, S.J. Levine, L. Wang, T.J. Huang, Lab Chip 14, 916–923 (2014)CrossRefGoogle Scholar
  4. S. Choi, S. Song, C. Choi, J.K. Park, Small 4, 634–641 (2008)CrossRefGoogle Scholar
  5. S. Choi, S. Song, C. Choi, J.-K. Park, Anal. Chem. 81, 1964–1968 (2009a)CrossRefGoogle Scholar
  6. S. Choi, S. Song, C. Choi, J.-K. Park, Anal. Chem. 81, 50–55 (2009b)CrossRefGoogle Scholar
  7. H. Chu, I. Doh, Y.H. Cho, Lab Chip 9, 686–691 (2009)CrossRefGoogle Scholar
  8. B. Chun, A.J.C. Ladd, Phys. Fluids 18, 136 (2006)CrossRefGoogle Scholar
  9. D. Di Carlo, Lab Chip 9, 3038–3046 (2009)CrossRefGoogle Scholar
  10. D. Di Carlo, D. Irimia, R.G. Tompkins, M. Toner, Proc. Natl. Acad. Sci. U. S. A. 104, 18892–18897 (2007)CrossRefGoogle Scholar
  11. D. Di Carlo, J.F. Edd, D. Irimia, R.G. Tompkins, M. Toner, Anal. Chem. 80, 2204–2211 (2008)CrossRefGoogle Scholar
  12. N. Gadish, J. Voldman, Anal. Chem. 78, 7870–7876 (2006)CrossRefGoogle Scholar
  13. G. Goddard, J.C. Martin, S.W. Graves, G. Kaduchak, Cytometry A 69A, 66–74 (2006)CrossRefGoogle Scholar
  14. C.H. Hsu, D. Di Carlo, C. Chen, D. Irimia, M. Toner, Lab Chip 8, 2128–2134 (2008)CrossRefGoogle Scholar
  15. Y. Jia, Y. Ren, H. Jiang, RSC Adv. 5, 66602–66610 (2015)CrossRefGoogle Scholar
  16. D. Jiang, W. Tang, N. Xiang, Z. Ni, RSC Adv. 6, 57647–57657 (2016)Google Scholar
  17. S.S. Kuntaegowdanahalli, A.A.S. Bhagat, G. Kumar, I. Papautsky, Lab Chip 9, 2973–2980 (2009)CrossRefGoogle Scholar
  18. L. Landau, E. Lifshitz, Fluid Mech, 2nd edn., vol. 6 (Pergamon Press, 1987)Google Scholar
  19. M.G. Lee, S. Choi, J.K. Park, Lab Chip 9, 3155 (2009)CrossRefGoogle Scholar
  20. M.G. Lee, S. Choi, J.K. Park, J. Chromatogr. A 1218, 4138–4143 (2011a)CrossRefGoogle Scholar
  21. M.G. Lee, S. Choi, H.J. Kim, H.K. Lim, J.H. Kim, N. Huh, J.K. Park, Appl. Phys. Lett. 98, 253702 (2011b)CrossRefGoogle Scholar
  22. M.G. Lee, J.H. Shin, C.Y. Bae, S. Choi, J.K. Park, Anal. Chem. 85, 6213–6218 (2013)CrossRefGoogle Scholar
  23. M. Li, S. Li, W. Cao, W. Li, W. Wen, G. Alici, Microfluid. Nanofluid. 14, 527–539 (2013)CrossRefGoogle Scholar
  24. C. Liu, C. Xue, J. Sun, G. Hu. Lab Chip 16, 884 (2016)CrossRefGoogle Scholar
  25. M.J. Moehlenbrock, A.K. Price, R.S. Martin, Analyst 131, 930 (2006)CrossRefGoogle Scholar
  26. N. Nivedita, Biomicrofluidics 7, 054101 (2013)CrossRefGoogle Scholar
  27. G. Segre, Nature 189, 209–210 (1961)CrossRefGoogle Scholar
  28. G. Segre, A. Silberberg, J. Fluid Mech. 14, 136–157 (1962)CrossRefGoogle Scholar
  29. J. Shi, S. Yazdi, S.C. Lin, X. Ding, I.K. Chiang, K. Sharp, T.J. Huang, Lab Chip 11, 2319–2324 (2011)CrossRefGoogle Scholar
  30. C. Simonnet, A. Groisman, Anal. Chem. 78, 5653 (2006)CrossRefGoogle Scholar
  31. A.D. Stroock, Science 295, 647–651 (2002)CrossRefGoogle Scholar
  32. J. Sun, M. Li, C. Liu, Y. Zhang, D. Liu, W. Liu, G. Hu, X. Jiang, Lab Chip 12, 3952–3960 (2012)CrossRefGoogle Scholar
  33. S.Y. Tang, W. Zhang, S. Baratchi, M. Nasabi, K. Kalantar-Zadeh, K. Khoshmanesh, Anal. Chem. 85, 6364–6371 (2013)CrossRefGoogle Scholar
  34. M. E. Warkiani, A. K. P. Tay, G. Guan, J. Han, Sci. Rep., 5, 11018 (2015)Google Scholar
  35. N. Xiang, K. Chen, Q. Dai, D. Jiang, D. Sun, Z. Ni, Microfluid. Nanofluid. 18, 29–39 (2015a)CrossRefGoogle Scholar
  36. N. Xiang, Z. Shi, W. Tang, D. Huang, X. Zhang, Z. Ni, RSC Adv. 5, 77264–77273 (2015b)CrossRefGoogle Scholar
  37. S. Yan, J. Zhang, G. Alici, H. Du, Y. Zhu, W. Li, Lab Chip, 2014, 14, 2993–3003Google Scholar
  38. S. Yan, J. Zhang, D. Yuan, Q. Zhao, J. Ma, W. Li, Appl. Phys. Lett. 109, 214101 (2016a)CrossRefGoogle Scholar
  39. S. Yan, J. Zhang, H. Chen, D. Yuan, G. Alici, H. Du, Y. Zhu, W. Li, Biomed. Microdevices 18, 1–9 (2016b)CrossRefGoogle Scholar
  40. S. Yan, S.H. Tan, Y. Li, S. Tang, A.J.T. Teo, J. Zhang, Q. Zhao, D. Yuan, R. Sluyter, N.T. Nguyen, Microfluid. Nanofluid. 22, 8 (2018)CrossRefGoogle Scholar
  41. D. Yuan, J. Zhang, S. Yan, G. Peng, Q. Zhao, G. Alici, H. Du, W. Li, Electrophoresis (2016).  https://doi.org/10.1002/elps.201600102
  42. D. Yuan, S.H. Tan, R. Sluyter, Q. Zhao, S. Yan, N.T. Nguyen, J. Guo, J. Zhang, W. Li, Anal. Chem. 89, 9574–9582 (2017)CrossRefGoogle Scholar
  43. J. Zhang, M. Li, W. H. Li, G. Alici. 23, 085023 (2013)Google Scholar
  44. J. Zhang, S. Yan, R. Sluyter, W. Li, G. Alici, N.-T. Nguyen, Sci. Rep. 4, 4527 (2014a)CrossRefGoogle Scholar
  45. J. Zhang, W. Li, M. Li, G. Alici, N.-T. Nguyen, Microfluid. Nanofluid. 17, 305–316 (2014b)CrossRefGoogle Scholar
  46. J. Zhang, S. Yan, D. Yuan, G. Alici, N.-T. Nguyen, M.E. Warkiani, W. Li, Lab Chip 16, 10–34 (2016)CrossRefGoogle Scholar
  47. Q. Zhao, J. Zhang, S. Yan, D. Yuan, H. Du, G. Alici, W. Li. Sci. Rep. 7, 41153 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations