Advertisement

Biomedical Microdevices

, 20:20 | Cite as

A cooperation of catheters and guidewires-based novel remote-controlled vascular interventional robot

  • Xianqiang Bao
  • Shuxiang Guo
  • Nan Xiao
  • Youxiang Li
  • Cheng Yang
  • Yuhua Jiang
Article

Abstract

Remote-controlled vascular interventional robots (RVIRs) are being developed to increase the overall accuracy of surgical operations and reduce the occupational risks of intervening physicians, such as radiation exposure and chronic neck/back pain. Several RVIRs have been used to operate catheters or guidewires accurately. However, a lack of cooperation between the catheters and guidewires results in the surgeon being unable to complete complex surgery by propelling the catheter/guidewire to the target position. Furthermore, it is a significant challenge to operate the catheter/guidewire accurately and detect their proximal force without damaging their surfaces. In this study, we introduce a novel method that allows catheters and guidewires to be operated simultaneously in complex surgery. Our method accurately captures force measurements and enables precisely controlled catheter and guidewire operation. A prototype is validated through various experiments. The results demonstrate the feasibility of the proposed RVIR to operate a catheter and guidewire accurately, detect the resistance forces, and complete complex surgical operations in a cooperative manner.

Keywords

Telesurgery Minimally invasive surgery Remote-controlled vascular interventional robot (RVIR) Cooperation of catheters and guidewires Force feedback 

Notes

Acknowledgements

This research is partly supported by National High-tech Research and Development Program (863 Program) of China (No.2015AA043202), and National Natural Science Foundation of China (61375094).

References

  1. F. Arai, R. Fujimura, T. Fukuda, M. Negoro, New catheter driving method using linear stepping mechanism for intravascular neurosurgery. IEEE Int Conf Robot Autom., 2944–2949 (2002)Google Scholar
  2. X. Bao, S. Guo, N. Xiao, Y. Wang, M. Qin, Y. Zhao, C. Xu, W. Pen, Design and evaluation of a novel guidewire navigation robot. IEEE Int Conf Mech Autom., 431–436 (2016)Google Scholar
  3. R. Beyar, L. Gruberg, D. Deleanu, A. Roguin, Y. Almagor, S. Cohen, G. Kumar, T. Wenderow, Remote-control percutaneous coronary interventions: Concept, validation, and first-in-humans pilot clinical trial. J. Am. Coll. Cardiol. 47(2), 296–300 (2006)CrossRefGoogle Scholar
  4. G. Bian, X. Xie, Z. Feng, Z. Hou, P. Wei, L. Cheng, M. Tan, An enhanced dual-finger robotic Hand for Catheter manipulating in vascular intervention: A preliminary study. IEEE Int Conf Inform Autom, 356–361 (2014)Google Scholar
  5. L. Cercenelli, E. Marcelli, G. Plicchi, Initial experience with a Telerobotic system to remotely navigate and automatically reposition standard steerable EP catheters. ASAIO J. 53(5), 523–529 (2007)CrossRefGoogle Scholar
  6. D. Cheng, Handbook of Mechanical Design, 7–8 (Chemical Industry Press, Beijing, China, 2008)Google Scholar
  7. M. Faddis, W. Blume, J. Finney, A. Hall, J. Rauch, J. Sell, K. Bae, M. Talcott, B. Lindsay, Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation. Circulation 106(23), 2980–2985 (2002)CrossRefGoogle Scholar
  8. Z. Feng, G. Bian, X. Xie, Z. Hou, J. Hao, Design and evaluation of a bio-inspired robotic hand for percutaneous coronary intervention. IEEE Int Conf Robot Autom., 5338–5343 (2015)Google Scholar
  9. Y. Fu, H. Liu, S. Wang, W. Deng, X. Li, Z. Liang, Skeleton-based active catheter navigation. Int J Med Robot Comput Assisted Surg. 5(2), 125–135 (2009)CrossRefGoogle Scholar
  10. Y. Fu, A. Gao, H. Liu, K. Li, Z. Liang, Development of a novel robotic catheter system for endovascular minimally invasive surgery. IEEE/ICME Int Conf Complex Med Eng., 400–405 (2011)Google Scholar
  11. J. Guo, S. Guo, Design and characteristics evaluation of a novel VR-based robot-assisted catheterization training system with force feedback for vascular interventional surgery. Microsyst. Technol. 23(8), 1–10 (2016)Google Scholar
  12. S. Guo, T. Fukuda, K. Kosuge, F. Arai, K. Oguro, M. Negoro, Micro catheter system with active guide wire. IEEE Int Conf Robot Autom., 79–84 (1995)Google Scholar
  13. S. Guo, H. Yamaji, Y. Kita, K. Izuishi, T. Tamiya, A novel active catheter system for ileus treatment. IEEE Int Conf Autom Logistics, 67–72 (2008)Google Scholar
  14. J. Guo, S. Guo, Y. Yu, Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery. Biomed. Microdevices 18(5), 76–92 (2016)CrossRefGoogle Scholar
  15. J. Jayender, R. Patel, A.S. Nikumb, Robot-assisted catheter insertion using hybrid impedance control. IEEE Int Conf Robot Autom, 607–612 (2006)Google Scholar
  16. J. Jayender, M. Azizian, R. Patel, Autonomous image-guided robot-assisted active catheter insertion. IEEE Trans. Robot. 24(4), 858–871 (2008)CrossRefGoogle Scholar
  17. L. Jones, in Human and Machine Haptics. By M. Cutkosky, R. Howe, K. Salisbury, and M. Srinivasan, Eds., MIT Press. Cambridge (2000)Google Scholar
  18. C. Jr, Robotic-assisted percutaneous coronary intervention filling an unmet need. J. Cardiovasc. Transl. Res. 5(1), 62–66 (2012)CrossRefGoogle Scholar
  19. P. Kanagaratnam, M. Koawing, D. Wallace, A. Goldenberg, N. Peters, D. Davies, Experience of robotic catheter ablation in humans using a novel remotely steerable catheter sheath. J. Interv. Card. Electrophysiol. 21(1), 19–26 (2008)CrossRefGoogle Scholar
  20. SB. Kesner, RD. Howe, Design and control of motion compensation cardiac catheters. IEEE Int Conf Robot Autom., 1059–1065 (2010)Google Scholar
  21. SB. Kesner, RD. Howe, Force control of flexible catheter robots for beating heart surgery. IEEE Int Conf Robot Autom., 1589–1594 (2011)Google Scholar
  22. E. Khan, W. Frumkin, G. Ng, S. Neelagaru, F. Abi-Samra, J. Lee, M. Giudici, D. Gohn, R. Winkle, J. Sussman, B. Knight, A. Berman, H. Calkins, First experience with a novel robotic remote catheter system: Amigo™ mapping trial. J. Interv. Card. Electrophysiol. 37(2), 121–129 (2013)CrossRefGoogle Scholar
  23. L. Klein, D. Miller, S. Balter, W. Laskey, D. Haines, A. Norbash, M. Mauro, J. Goldstein, Occupational health hazards in the interventional laboratory: Time for a safer environment. Catheter Cardiovasc Interv. 73(3), 432–438 (2009)CrossRefGoogle Scholar
  24. E. Marcelli, L. Cercenelli, G. Plicchi, A novel telerobotic system to remotely navigate standard electrophysiology catheters. Comput. Cardiol. 35, 137–140 (2008)Google Scholar
  25. C. Meng, J. Zhang, D. Liu, B. Liu, F. Zhou, A remote-controlled vascular interventional robot: System structure and image guidance. Int J Med Robot Comput Assisted Surg. 9(2), 230–239 (2013)CrossRefGoogle Scholar
  26. J. Park, J. Choi, H. Pak, S. Song, J. Lee, Y. Park, S. Shin, K. Sun, Development of a force-reflecting robotic platform for cardiac catheter navigation. Artif. Organs 34(11), 1034–1039 (2010)CrossRefGoogle Scholar
  27. C. Riga, C. Bicknell, M. Hamady, N. Cheshire, Evaluation of robotic endovascular catheters for arch vessel cannulation. J. Vasc. Surg. 54(3), 799–809 (2011)CrossRefGoogle Scholar
  28. C. Riga, C. Bicknell, A. Rolls, N. Cheshire, M. Hamady, Robot-assisted fenestrated endovascular aneurysm repair (FEVAR) using the Magellan system. J Vasc Interv Radiol. 24(2), 191–196 (2013)CrossRefGoogle Scholar
  29. W. Saliba, J. Cummings, S. Oh, Y. Zhang, T. Mazgalev, R. Schweikert, J. Burkhardt, A. Natale, Novel robotic catheter remote control system: Feasibility and safety of transseptal puncture and endocardial catheter navigation. J. Cardiovasc. Electrophysiol. 17(10), 1102–1105 (2006)CrossRefGoogle Scholar
  30. M. Schiemann, R. Killmann, M. Kleen, N. SchAbolmaali, J. Finney, T. Vogl, Vascular guide wire navigation with a magnetic guidance system: Experimental results in a phantom. Radiology 232(2), 475–481 (2004)CrossRefGoogle Scholar
  31. J. Shen, S. Li, D. Chen, Y. Yan, Design and experiment of guide wire tele-manipulation system based on laser mouse sensor. Chinese J Med Inst 36(1), 32–35 (2012)Google Scholar
  32. G. Srimathveeravalli, T. Kesavadas, X. Li, Design and fabrication of a robotic mechanism for remote steering and positioning of interventional devices. Int J Med Robot Comput Assisted Surg. 6(2), 160–170 (2010)Google Scholar
  33. M. Tanimoto, F. Arai, T. Fukuda, H. Iwata, K. Itoigawa, Y. Gotoh, M. Hashimoto, M. Negoro, Micro force sensor for intravascular neurosurgery and in vivo experiment. IEEE Int Confer Robot Autom., 504–509 (1997)Google Scholar
  34. M. Tanimoto, F. Arai, T. Fukuda, K. Itoigawa, M. Hashimoto, I. Takahashi, M. Negoro, Telesurgery system for intravascular neurosurgery. Int Confer Med Image Comput Comput Assisted Interv., 29–39 (2000)Google Scholar
  35. M. Tavallaei, D. Gelman, M. Lavdas, A. Skanes, D. Jones, J. Bax, M. Drangova, Design, Development and evaluation of a compact telerobotic catheter navigation system. Int J Med Robot Comput Assisted Surg 12(3), 442–452 (2016)CrossRefGoogle Scholar
  36. R. Taylor, D. Stoiariovici, Medical robotics in computer-integrated surgery. IEEE Trans Rob Autom 19(5), 765–781 (2003)CrossRefGoogle Scholar
  37. C. Tercero, S. Ikeda, T. Uchiyama, T. Fukuda, F. Arai, Y. Okada, Y. Ono, R. Hattori, T. Yamamoto, M. Negoro, I. Takahashi, Autonomous catheter insertion system using magnetic motion capture sensor for endovascular surgery. Int J Med Robot Comput Assisted Surg 3(1), 52–58 (2010)CrossRefGoogle Scholar
  38. Y. Thakur, D.W. Holdsworth, M. Drangova, Characterization of catheter dynamics during percutaneous transluminal catheter procedures. IEEE Trans. Biomed. Eng. 56(8), 2140–2143 (2009a)CrossRefGoogle Scholar
  39. Y. Thakur, J. Bax, D. Holdsworth, M. Drangova, Design and performance evaluation of a remote catheter navigation system. IEEE Trans. Biomed. Eng. 56(7), 1901–1908 (2009b)CrossRefGoogle Scholar
  40. T. Wang, D. Zhang, D. Liu, Remote-controlled vascular interventional surgery robot. Int J Med Robot Comput Assisted Surg. 6(2), 194–201 (2010)Google Scholar
  41. Y. Wang, S. Guo, T. Tamiya, H. Hirata, H. Ishihara, X. Yin, A virtual-reality simulator and force sensation combined catheter operation training system and its preliminary evaluation. Int J Med Robot Comput Assisted Surg (2016).  https://doi.org/10.1002/rcs.e1769
  42. M. Whitby, C. Martin, A study of the distribution of dose across the hands of interventional radiologists and cardiologists. Br. J. Radiol. 78(927), 219–229 (2005)CrossRefGoogle Scholar
  43. N. Xiao, S. Guo, J. Guo, X. Xiao, Development of a kind of robotic catheter manipulation system. IEEE Int Confer Robot Biomi., 32–37 (2008)Google Scholar
  44. N. Xiao, J. Guo, S. Guo, T. Tamiya, A robotic catheter system with real-time force feedback and monitor. Australas Phys Eng Sci Med. 35(3), 283–289 (2012)CrossRefGoogle Scholar
  45. N. Xiao, L. Shi, B. Gao, S. Guo, T. Tamiya, Clamping force evaluation for a robotic catheter navigation system. Neurosci Biomed Eng. 1(2), 141–145 (2013)CrossRefGoogle Scholar
  46. X. Yin, S. Guo, N. Xiao, T. Tamiya, Safety operation consciousness realization of a MR fluids-based novel haptic Interface for Teleoperated catheter minimally invasive neuro surgery. IEEE Trans Mechatronics. 21(2), 1043–1054 (2016)CrossRefGoogle Scholar
  47. N. Zakaria, T. Komeda, C. Low, K. Mahadhir, Development of foolproof catheter guide system based on mechatronic design. Prod. Eng. 7(1), 81–90 (2013)CrossRefGoogle Scholar
  48. P. Zhang, S. Yu, Y. Hu, X. Ma, J. Zhang, Design of a novel master-slave robotic system for minimally intravascular invasive surgery. IEEE Int Conf Mech Autom., 259–264 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Ministry of Industry and Information TechnologyBeijing Institute of TechnologyBeijingChina
  2. 2.Intelligent Mechanical Systems Engineering DepartmentKagawa UniversityTakamatsuJapan
  3. 3.Department of Interventional Neuroradiology, Beijing Engineering Technology Research Center for Interventional Neuroradiology, and Beijing Neurosurgical Institute, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina

Personalised recommendations