Skip to main content

Advertisement

Log in

Structuring a multi-nodal neural network in vitro within a novel design microfluidic chip

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Neural network formation is a complex process involving axon outgrowth and guidance. Axon guidance is facilitated by structural and molecular cues from the surrounding microenvironment. Micro-fabrication techniques can be employed to produce microfluidic chips with a highly controlled microenvironment for neural cells enabling longitudinal studies of complex processes associated with network formation. In this work, we demonstrate a novel open microfluidic chip design that encompasses a freely variable number of nodes interconnected by axon-permissible tunnels, enabling structuring of multi-nodal neural networks in vitro. The chip employs a partially open design to allow high level of control and reproducibility of cell seeding, while reducing shear stress on the cells. We show that by culturing dorsal root ganglion cells (DRGs) in our microfluidic chip, we were able to structure a neural network in vitro. These neurons were compartmentalized within six nodes interconnected through axon growth tunnels. Furthermore, we demonstrate the additional benefit of open top design by establishing a 3D neural culture in matrigel and a neuronal aggregate 3D culture within the chips. In conclusion, our results demonstrate a novel microfluidic chip design applicable to structuring complex neural networks in vitro, thus providing a versatile, highly relevant platform for the study of neural network dynamics applicable to developmental and regenerative neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • M.W. Amoroso, G.F. Croft, D.J. Williams, S. O’Keeffe, M.A. Carrasco, A.R. Davis, et al., J Neurosci : Official J Soc Neurosci. 33, 2 (2013)

    Article  Google Scholar 

  • M.-C. Chuang, H.-Y. Lai, J.-A. Annie Ho, Y.-Y. Chen, Biosens. Bioelectron. 41 (2013)

  • B. Deleglise, S. Magnifico, E. Duplus, P. Vaur, V. Soubeyre, M. Belle, et al., Acta Neuropathol. Commun. 2 (2014)

  • J.-P. Dollé, B. Morrison, R.R. Schloss, M.L. Yarmush, Lab Chip 13, 3 (2013)

    Article  Google Scholar 

  • S. Hosmane, A. Fournier, R. Wright, L. Rajbhandari, R. Siddique, I.H. Yang, et al., Lab Chip 11, 22 (2011)

    Article  Google Scholar 

  • T.T. Kanagasabapathi, D. Ciliberti, S. Martinoia, W.J. Wadman, M.M.J. Decré, Front. Neuroeng. 4 (2011)

  • H.K. Kleinman, G.R. Martin, Semin. Cancer Biol. 15, 5 (2005)

    Article  Google Scholar 

  • M.A. Lancaster, N.S. Corsini, S. Wolfinger, E.H. Gustafson, A.W. Phillips, T.R. Burkard, et al., Nat. Biotechnol. 35, 7 (2017)

    Article  Google Scholar 

  • H.U. Lee, S. Nag, A. Blasiak, Y. Jin, N. Thakor, I.H. Yang, ACS Chem. Neurosci. 7, 10 (2016)

    Google Scholar 

  • Y. Lei, J. Li, N. Wang, X. Yang, Y. Hamada, Q. Li, et al., Integr. Biol. 8, 3 (2016)

    Article  Google Scholar 

  • X. Lu, J.S. Kim-Han, K.L. O’Malley, S.E. Sakiyama-Elbert, J. Neurosci. Methods 209, 1 (2012)

    Article  Google Scholar 

  • J.W. Park, B. Vahidi, A.M. Taylor, S.W. Rhee, N.L. Jeon, Nat. Protoc. 1, 4 (2006)

    Article  Google Scholar 

  • J.-M. Peyrin, B. Deleglise, L. Saias, M. Vignes, P. Gougis, S. Magnifico, et al., Lab Chip 11, 21 (2011)

    Article  Google Scholar 

  • W.W. Poon, M. Blurton-Jones, C.H. Tu, L.M. Feinberg, M.A. Chabrier, J.W. Harris, et al., Neurobiol. Aging 32, 5 (2011)

    Article  Google Scholar 

  • S.K. Ravula, M.S. Wang, S.A. Asress, J.D. Glass, A. Bruno Frazier, J. Neurosci. Methods 159, 1 (2007)

    Article  Google Scholar 

  • R. Renault, N. Sukenik, S. Descroix, L. Malaquin, J.-L. Viovy, J.-M. Peyrin, et al., PLoS One 10, 4 (2015)

    Google Scholar 

  • O. Sporns, R. Kötter, PLoS Biol. 2, 11 (2004)

    Article  Google Scholar 

  • A.M. Taylor, S.W. Rhee, C.H. Tu, D.H. Cribbs, C.W. Cotman, N.L. Jeon, Langmuir: ACS J Surfaces Colloids 19, 5 (2003)

    Google Scholar 

  • A.M. Taylor, M. Blurton-Jones, S.W. Rhee, D.H. Cribbs, C.W. Cotman, N.L. Jeon, Nat. Methods 2, 8 (2005)

    Article  Google Scholar 

  • A.M. Taylor, S. Menon, S.L. Gupton, Lab Chip 15, 13 (2015)

    Article  Google Scholar 

  • M. Tessier-Lavigne, M. Placzek, A.G.S. Lumsden, J. Dodd, T.M. Jessell, Nature 336, 6201 (1988)

    Article  Google Scholar 

  • C. Tsantoulas, C. Farmer, P. Machado, K. Baba, S.B. McMahon, R. Raouf, PLoS One 8, 11 (2013)

    Article  Google Scholar 

  • B. Vahidi, J.W. Park, H.J. Kim, N.L. Jeon, J. Neurosci. Methods 170, 2 (2008)

    Article  Google Scholar 

  • Y. Wang, V. Balaji, S. Kaniyappan, L. Krüger, S. Irsen, K. Tepper, et al., Mol. Neurodegener. 12 (2017)

  • G.M. Whitesides, Nature 442, 7101 (2006)

    Article  Google Scholar 

  • Y. Yu, M.H. Shamsi, D.L. Krastev, M.D.M. Dryden, Y. Leung, A.R. Wheeler, Lab Chip 16, 3 (2016)

    Article  Google Scholar 

  • E.E. Zahavi, A. Ionescu, S. Gluska, T. Gradus, K. Ben-Yaakov, E. Perlson, J. Cell Sci. 128, 6 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Council of Norway, Norwegian Micro- and Nano-Fabrication Facility, NorFab, project number 245963/F50, NTNU program for Enabling Technologies, (Nanotechnology), and the Liaison Committee between the Central Norway Health Authority and NTNU (Samarbeidsorganet HMN-NTNU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosanne van de Wijdeven.

Ethics declarations

All animal procedures were in accordance with the EU Directive 86/609/EEC and the Norwegian laws and regulations controlling procedures on experimental animals.

Conflict of interest

There are no conflicts to declare.

Additional information

Rosanne van de Wijdeven and Ola Huse Ramstad share first authorship

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van de Wijdeven, R., Ramstad, O.H., Bauer, U.S. et al. Structuring a multi-nodal neural network in vitro within a novel design microfluidic chip. Biomed Microdevices 20, 9 (2018). https://doi.org/10.1007/s10544-017-0254-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0254-4

Keywords

Navigation