Advertisement

Biomedical Microdevices

, 19:99 | Cite as

A microfluidic device for quantitative investigation of zebrafish larvae’s rheotaxis

  • Amir Reza Peimani
  • Georg Zoidl
  • Pouya RezaiEmail author
Article

Abstract

Zebrafish is a model organism for various sensory-motor biological studies. Rheotaxis, or the ability of zebrafish to orient and swim against the water stream, is a common behavior that involves multiple sensory-motor processes such as their lateral line and visual systems. Due to the lack of a controllable and easy-to-use assay, zebrafish rheotaxis at larval stages is not well-understood. In this paper, we report a microfluidic device that can be used to apply the flow stimulus precisely and repeatedly along the longitudinal axis of individual zebrafish larvae to study their coaxial rheotaxis. We quantified rheotaxis in terms of the response rate and location along the channel at various flow velocities (9.5–38 mm.sec−1). The larvae effectively exhibited a similarly high rheotactic response at low and medium velocities (9.5 and 19 mm.sec−1); however, at high velocity of 38 mm.sec−1, despite sensing the flow, their rheotactic response decreased significantly. The flow velocity also affected the response location along the channel. At 9.5 mm.sec−1, responses were distributed evenly along the channel length while, at 19 and 38 mm.sec−1, the larvae demonstrated higher rheotaxis responses at the anterior and posterior ends of the channel, respectively. This result shows that although the response is similarly high at low and medium flow velocities, zebrafish larvae become more sensitive to the flow at medium velocity, demonstrating a modulated rheotactic behavior. Employing our device, further investigations can be conducted to study the sensory-motor systems involved in rheotaxis of zebrafish larvae and other fish species.

Keywords

Microfluidics Zebrafish larvae Rheotaxis Behavioral screening Flow stimulation 

References

  1. F. Ahmad, L.P.J.J. Noldus, R.A.J. Tegelenbosch, M.K. Richardson, Behaviour 149, 1241 (2012)CrossRefGoogle Scholar
  2. G.P. Arnold, Biol. Rev. Camb. Philos. Soc. 49, 515 (1974)CrossRefGoogle Scholar
  3. S. Basu, C. Sachidanandan, Chem. Rev. 113, 7952–7980 (2013)CrossRefGoogle Scholar
  4. S.A. Budick, D.M. O’Malley, J. Exp. Biol. 203, 2565 (2000)Google Scholar
  5. R.T.P. Calum, A. MacRae, Nat. Rev. Drug Discov. 14, 721 (2015)CrossRefGoogle Scholar
  6. R. Candelier, M. Sriti Murmu, S. Alejo Romano, A. Jouary, G. Debrégeas, G. Sumbre, Sci Rep 5, 12196 (2015)CrossRefGoogle Scholar
  7. R.M. Colwill, R. Creton, Rev. Neurosci. 22, 63 (2011)CrossRefGoogle Scholar
  8. D. De Paiva, D. Forsin, R. Armando, D. Cunha, A. Rosa, D.F. Baptista, Bull Env. Contam. Toxicology 88, 1009 (2012)Google Scholar
  9. F. Ek, M. Malo, M.Å. Andersson, C. Wedding, J. Kronborg, P. Svensson, S. Waters, P. Petersson, R. Olsson, ACS Chem. Neurosci. 7, 633 (2016)CrossRefGoogle Scholar
  10. B. Gupta, P. Rezai, Micromachines 7, 123 (2016)CrossRefGoogle Scholar
  11. S.I. Higashijima, Develop. Growth Differ. 50, 407 (2008)CrossRefGoogle Scholar
  12. K.H. Huang, M.B. Ahrens, T.W. Dunn, F. Engert, Curr. Biol. 23, 1566 (2013)CrossRefGoogle Scholar
  13. F.A. Issa, G. O’Brien, P. Kettunen, A. Sagasti, D.L. Glanzman, D.M. Papazian, J. Exp. Biol. 214, 1028 (2011)CrossRefGoogle Scholar
  14. A. V. Kalueff, J. M. Cachat, Eds, Zebrafish Models in Neurobehavioral Research, Illustrate (Humana Press, 2010). http://www.springer.com/gp/book/9781607619215
  15. M.J. Mchenry, K.E. Feitl, J.A. Strother, W.J. Van Trump, W.J. Van Trump, Biol. Lett. 5, 477 (2009)CrossRefGoogle Scholar
  16. D.L. McLean, J.R. Fetcho, J. Comp. Neurol. 480, 38 (2004)CrossRefGoogle Scholar
  17. B.D. Monesson-Olson, J. Browning-Kamins, R. Aziz-Bose, F. Kreines, J.G. Trapani, PLoS One 9, 1 (2014)CrossRefGoogle Scholar
  18. A. Nady, A. R. Peimani, G. Zoidl, P. Rezai, A microfluidic device for partial immobilization, chemical exposure and behavioural screening of zebrafish larvae. Lab Chip. (2017).  https://doi.org/10.1039/C7LC00786H
  19. R. Olive, S. Wolf, A. Dubreuil, V. Bormuth, G. Debrégeas, R. Candelier, Front. Syst. Neurosci. 10, 14 (2016)CrossRefGoogle Scholar
  20. J. Olszewski, M. Haehnel, M. Taguchi, J.C. Liao, PLoS One 7, e36661 (2012)CrossRefGoogle Scholar
  21. A. R. Peimani, G. Zoidl, P. Rezai, Zebrafish Larva’s Cyclic Electrotaxis Behavior and Its Dependency on Dopamine Level Enabled by a Novel Microfluidic Assay, International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2017), October 22–26 2017 (Savannah, Georgia, 2017), pp. 1094–1095Google Scholar
  22. S.D. Pelkowski, M. Kapoor, H.A. Richendrfer, X. Wang, R.M. Colwill, R. Creton, Behav. Brain Res. 223, 135 (2011)CrossRefGoogle Scholar
  23. A. Suli, G.M. Watson, E.W. Rubel, D.W. Raible, PLoS One 7, 1 (2012)CrossRefGoogle Scholar
  24. H.A. Swain, C. Sigstad, F.M. Scalzo, Neurotoxicol. Teratol. 26, 725 (2004)CrossRefGoogle Scholar
  25. F. Yang, C. Gao, P. Wang, G.-J. Zhang, Z. Chen, Lab Chip 7, 1106 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringYork UniversityTorontoCanada
  2. 2.Department of BiologyYork UniversityTorontoCanada

Personalised recommendations