Advertisement

Biomedical Microdevices

, 19:91 | Cite as

Characterisation of human induced pluripotent stem cell-derived endothelial cells under shear stress using an easy-to-use microfluidic cell culture system

  • Rsituko Ohtani-KanekoEmail author
  • Kenjiro Sato
  • Atsuhiro Tsutiya
  • Yuka Nakagawa
  • Kazutoshi Hashizume
  • Hidekatsu Tazawa
Article

Abstract

Induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) can contribute to elucidating the pathogenesis of heart and vascular diseases and developing their treatments. Their precise characteristics in fluid flow however remain unclear. Therefore, the aim of the present study is to characterise these features. We cultured three types of ECs in a microfluidic culture system: commercially available human iPS-ECs, human umbilical vein endothelial cells (HUVECs) and human umbilical artery endothelial cells (HUAECs). We then examined the mRNA expression levels of endothelial marker gene cluster of differentiation 31 (CD31), fit-related receptor tyrosine kinase (Flk-1), and the smooth muscle marker gene smooth muscle alpha-actin, and investigated changes in plasminogen activator inhibitor-1 (PAI-1) secretion and intracellular F-actin arrangement following heat stress. We also compared expressions of the arterial and venous marker genes ephrinB2 and EphB4, and the endothelial gap junction genes connexin (Cx) 37, 40, and 43 under fluidic shear stress to determine their arterial or venous characteristics. We found that iPS-ECs had similar endothelial marker gene expressions and exhibited similar increases in PAI-1 secretion under heat stress as HUVECs and HUAECs. In addition, F-actin arrangement in iPSC-ECs also responded to heat stress, as previously reported. However, they had different expression patterns of arterial and venous marker genes and Cx genes under different fluidic shear stress levels, showing that iPSC-ECs exhibit different characteristics from arterial and venous ECs. This microfluidic culture system equipped with variable shear stress control will provide an easy-to-use assay tool to examine characteristics of iPS-ECs generated by different protocols in various laboratories and contribute to basic and applied biomedical researches on iPS-ECs.

Keywords

Microfluidic culture system Induced pluripotent stem cell-derived endothelial cells Shear stress Plasminogen activator inhibitor-1, PAI-1 Endothelial gene markers 

Notes

Acknowledgements

This study was partially supported by Research Center for Biomedical Engineering in Toyo University. This study was also partially supported by Life Innovation Research Center in Toyo University.

References

  1. A.C. Brisset, B.E. Isakson, B.R. Kwak, Antioxid. Redox Signal. 11, 267 (2009)CrossRefGoogle Scholar
  2. Q. Chen, H. Zhang, Y. Liu, S. Adams, H. Eilken, M. Stehling, M. Corada, E. Dejana, B. Zhou, R.H. Adams, Nat. Commun. 7, 12422 (2016)CrossRefGoogle Scholar
  3. L.J. Chen, S. Ito, H. Kai, K. Nagamine, N. Nagai, M. Nishizawa, T. Abe, H. Kaji, Sci. Rep. 7, 3538 (2017)CrossRefGoogle Scholar
  4. J.E. Deanfield, J.P. Halcox, T.J. Rabelink, Circulation 115(10), 1285 (2007)Google Scholar
  5. A. Eichmann, C. Corbel, V. Nataf, P. Vaigot, C. Bréant, N.M. Le Douarin, Proc. Natl. Acad. Sci. U. S. A. 94, 5141 (1997)CrossRefGoogle Scholar
  6. O. Hadadeh, E. Barruet, F. Peiretti, M. Verdier, D. Bernot, Y. Hadjal, C.E. Yazidi, A. Robaglia-Schlupp, A.M. De Paula, D. Nègre, M. Iacovino, M. Kyba, M.C. Alessi, B. Binétruy, PLoS One 7, e49065 (2012)CrossRefGoogle Scholar
  7. S. Hamauchi, U. Shichinohe, H. Uchino, S. Yamaguchi, N. Nakayama, K. Kazumata, T. Osanai, T. Abumiya, K. Houkin, T. Era, PLoS One 11, e0163561 (2016)CrossRefGoogle Scholar
  8. M.A. Hervé, G. Meduri, F.G. Petit, T.S. Domet, G. Lazennec, S. Mourah, M. Perrot-Applanat, J. Endocrinol. 188, 91 (2006)CrossRefGoogle Scholar
  9. T. Ikuno, H. Masumoto, K. Yamamizu, M. Yoshioka, K. Minakata, T. Ikeda, R. Sakata, J.K. Yamashita, PLoS One 12, e0173271 (2017)CrossRefGoogle Scholar
  10. T. Inai, M.R. Mancuso, D.M. McDonald, J. Kobayashi, K. Nakamura, Y. Shibata, Histochem. Cell Biol. 122, 477 (2004)CrossRefGoogle Scholar
  11. T.L. Johnson, R.M. Nerem, Endothelium 14, 215 (2007)CrossRefGoogle Scholar
  12. A. Kamiya, R. Bukhari, T. Togawa, Bull. Math. Biol. 46, 127 (1984)CrossRefGoogle Scholar
  13. N.M. Kane, Q. Xiao, A.H. Baker, Z. Luo, Q. Xu, C. Emanueli, Pharmacol. Ther. 129, 29 (2011)CrossRefGoogle Scholar
  14. S. Kashiwagi, Y. Izumi, T. Gohongi, Z.N. Demou, L. Xu, P.L. Huang, D.G. Buerk, L.L. Munn, R.K. Jain, D. Fukumura, J. Clin. Invest. 115, 1816 (2005)CrossRefGoogle Scholar
  15. S. Kathiresan, D. Srivastava, Cell 148, 1242 (2012)CrossRefGoogle Scholar
  16. M.E. Katt, Z.S. Xu, S. Gerecht, P.C. Searson, PLoS One 11, e0152105 (2016)CrossRefGoogle Scholar
  17. N.J. Leeper, A.L. Hunter, J.P. Cooke, Circulation 122, 517 (2010)CrossRefGoogle Scholar
  18. E.S. Lippmann, A. Al-Ahmad, S.M. Azarin, S.P. Palecek, E.V. Shusta, Sci Rep 4, 4160 (2014)CrossRefGoogle Scholar
  19. H. Minami, K. Tashiro, A. Okada, N. Hirata, T. Yamaguchi, K. Takayama, H. Mizuguchi, K. Kawabata, PLoS One 10, e0128890 (2015)CrossRefGoogle Scholar
  20. T.G. Papaioannou, C. Stefanadis, Hell. J. Cardiol. 46, 9 (2005)Google Scholar
  21. A. Pfenniger, C. Wong, E. Sutter, S. Cuhlmann, S. Dunoyer-Geindre, F. Mach, A.J. Horrevoets, P.C. Evans, R. Krams, B.R. Kwak, J. Mol. Cell. Cardiol. 53, 299 (2012)CrossRefGoogle Scholar
  22. A.J. Rufaihah, N.F. Huang, S. Jame, J.C. Lee, H.N. Nguyen, B. Byers, A. De, J. Okogbaa, M. Rollins, R. Reijo-Pera, S.S. Gambhir, J.P. Cooke, Arterioscler. Thromb. Vasc. Biol. 31, e72–e79 (2011)CrossRefGoogle Scholar
  23. K. Sato, M. Nakajima, S. Tokuda, A. Ogawa, Anal. Sci. 32, 1217 (2016)CrossRefGoogle Scholar
  24. F. Shalaby, J. Rosant, T.P. Yamaguchi, M. Gertsenstein, X.F. Wu, M.L. Breitman, A.C. Schuh, Nature 376, 62 (1995)CrossRefGoogle Scholar
  25. H. Stockinger, S.J. Gadd, R. Eher, O. Majdic, W. Schreiber, W. Kasinrerk, B. Strass, E. Schnabl, W. Knapp, J. Immunol. 145, 3889 (1990)Google Scholar
  26. H. Suzuki, R. Shibata, T. Kito, M. Ishii, P. Li, T. Yoshikai, N. Nishio, S. Ito, Y. Numaguchi, J.K. Yamashita, T. Murohara, K. Isobe, BMC Cell Biol. 11, 72 (2010).  https://doi.org/10.1186/1471-2121-11-72 CrossRefGoogle Scholar
  27. K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, Cell 131(5), 861 (2007)CrossRefGoogle Scholar
  28. K.S. Tan, K. Tamura, M.I. Lai, A. Veerakumarasivam, Y. Nakanishi, M. Ogawa, D. Sugiyama, Stem Cell Rev. 9, 586 (2013)CrossRefGoogle Scholar
  29. H. Tazawa, K. Sato, A. Tsutiya, M. Tokeshi, R. Ohtani-Kaneko, Thromb. Res. 136, 328 (2015)CrossRefGoogle Scholar
  30. H. Tazawa, S. Sunaoshi, M. Tokeshi, T. Kitamori, R. Ohtani-Kaneko, Anal. Sci. 32, 349 (2016)CrossRefGoogle Scholar
  31. J.A. van Mourik, O.C. Leeksma, J.H. Reinders, P.G. de Groot, J. Zandbergen-Spaargaren, J. Biol. Chem. 260, 11300 (1985)Google Scholar
  32. K.S. Volz, E. Miljan, A. Khoo, J.P. Cooke, Vasc Pharmacol 56, –288 (2012)Google Scholar
  33. B.J. Vorderwülbecke, J. Maroski, K. Fiedorowicz, L. Da Silva-Azevedo, A. Marki, A.R. Pries, A. Zakrzewicz, Am. J. Physiol. Heart Circ. Physiol. 302, H143 (2012)CrossRefGoogle Scholar
  34. H.U. Wang, Z.F. Chen, D.J. Anderson, Cell 93(5), 741 (1998)CrossRefGoogle Scholar
  35. T.P. Yamaguchi, D.J. Dumont, R.A. Conlon, M.L. Breitman, J. Rossant, Development 118, 489 (1993)Google Scholar
  36. J. Yamashita, H. Itoh, M. Hirashima, M. Ogawa, S. Nishikawa, T. Yurugi, M. Naito, K. Nakao, S. Nishikawa, Nature 408, 92 (2000)CrossRefGoogle Scholar
  37. X. Zhang, P. Jones, S.J. Haswell, Chem. Eng. J. 135S, S82 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Life SciencesToyo UniversityOuraJapan
  2. 2.Department of BiochemistrySt. Marianna University School of MedicineKawasakiJapan
  3. 3.Institute of Microchemical Technology Co., Ltd.KawasakiJapan

Personalised recommendations