Biomedical Microdevices

, 19:85 | Cite as

Embryonic body culturing in an all-glass microfluidic device with laser-processed 4 μm thick ultra-thin glass sheet filter

  • Y. Yalikun
  • N. Tanaka
  • Y. Hosokawa
  • T. Iino
  • Y. Tanaka


In this paper, we report the development and demonstration of a method to fabricate an all-glass microfluidic cell culturing device without circulation flow. On-chip microfluidic cell culturing is an indispensable technique for cellular replacement therapies and experimental cell biology. Polydimethylsiloxane (PDMS) have become a popular material for fabricating microfluidic cell culture devices because it is a transparent, biocompatible, deformable, easy-to-mold, and gas-permeable. However, PDMS is also a chemically and physically unstable material. For example, PDMS undergoes aging easily even in room temperature conditions. Therefore, it is difficult to control long term experimental culturing conditions. On the other hand, glass is expected to be stable not only in physically but also chemically even in the presence of organic solvents. However, cell culturing still requires substance exchanges such as gases and nutrients, and so on, which cannot be done in a closed space of a glass device without circulation flow that may influence cell behavior. Thus, we introduce a filter structure with micropores onto a glass device to improve permeability to the cell culture space. Normally, it is extremely difficult to fabricate a filter structure on a normal glass plate by using a conventional fabrication method. Here, we demonstrated a method for fabricating an all-glass microfluidic cell culturing device having filters structure. The function of this all-glass culturing device was confirmed by culturing HeLa, fibroblast and ES cells. Compared with the closed glass devices without a filter structure, the numbers of cells in our device increased and embryonic bodies (EBs) were formed. This method offers a new tool in microfluidic cell culture technology for biological analysis and it expands the field of microfluidic cell culture.


Laser fabrication Glass filter Embryonic body ES cell 



This research was funded by the ImPACT Program of the Council for Science, Technology, and Innovation (Cabinet Office, Government of Japan). The authors also thank Dr. H. R. Ueda, H. Ukai, S. Funano and N. Ota, RIKEN, Japan for providing materials and useful discussion.

Supplementary material

10544_2017_227_MOESM1_ESM.docx (5 mb)
ESM 1 (DOCX 5122 kb)


  1. T. Ahsan, R.M. Nerem, Tissue Eng. A 16, 3547 (2010)CrossRefGoogle Scholar
  2. A. Akkurt, Mater. Des. 30, 810 (2009)CrossRefGoogle Scholar
  3. A. Ben-Yakar, R.L. Byer, J. Appl. Phys. 96, 5316 (2004)CrossRefGoogle Scholar
  4. M.D. Brennan, M.L. Rexius-Hall, L.J. Elgass, D.T. Eddington, Lab Chip 14, 4305 (2014)CrossRefGoogle Scholar
  5. S. Butkus, D. Paipulas, R. Sirutkaitis, and V. Sirutkaitis, 9, 213 (2014)Google Scholar
  6. A. Choe, S.K. Ha, I. Choi, N. Choi, J.H. Sung, Biomed. Microdevices 19, 4 (2017)CrossRefGoogle Scholar
  7. G. Firpo, E. Angeli, L. Repetto, U. Valbusa, J. Membr. Sci. 481, 1 (2015)CrossRefGoogle Scholar
  8. S. Funano, N. Tanaka, Y. Tanaka, Anal. Sci. 33, 723 (2017)CrossRefGoogle Scholar
  9. W.-T. Fung, A. Beyzavi, P. Abgrall, N.-T. Nguyen, H.-Y. Li, Lab Chip 9, 2591 (2009)CrossRefGoogle Scholar
  10. E. Garreta, E. Melo, D. Navajas, R. Farre, Phys. Rep. 2, e12075 (2014)CrossRefGoogle Scholar
  11. S. Halldorsson, E. Lucumi, R. Gómez-Sjöberg, R.M.T. Fleming, Biosens. Bioelectron. 63, 218 (2015)CrossRefGoogle Scholar
  12. P. Han, D.M. Bartels, J. Phys. Chem. 100, 5597 (1996)CrossRefGoogle Scholar
  13. X. He, H. Kimura, S. Kaneda, and J. Kawada, MicroTAS 2012, 1585 (2012)Google Scholar
  14. F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, K. Sugioka, Sensors 14, 19402 (2014)CrossRefGoogle Scholar
  15. P.M. Herst, M.V. Berridge, Biochim. Biophys. Acta Bioenerg. 1767, 170 (2007)CrossRefGoogle Scholar
  16. S. Hiki, K. Mawatari, A. Aota, M. Saito, T. Kitamori, Anal. Chem. 83, 5017 (2011)CrossRefGoogle Scholar
  17. H. Hisamoto, Y. Shimizu, K. Uchiyama, M. Tokeshi, Y. Kikutani, A. Hibara, T. Kitamori, Anal. Chem. 75, 350 (2003)CrossRefGoogle Scholar
  18. Y. Hosokawa, H. Takabayashi, S. Miura, C. Shukunami, Y. Hiraki, H. Masuhara, Appl. Phys. A 79, 795 (2004)CrossRefGoogle Scholar
  19. D. Huh, B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, and D. E. Ingber, Science (New York, N.Y.) 328, 1662 (2010)Google Scholar
  20. K. Jang, K. Sato, Y. Tanaka, Y. Xu, M. Sato, T. Nakajima, K. Mawatari, T. Konno, K. Ishihara, T. Kitamori, Lab Chip 10, 1937 (2010)CrossRefGoogle Scholar
  21. A.P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, A.J. Hunt, Proc. Natl. Acad. Sci. U. S. A. 101, 5856 (2004)CrossRefGoogle Scholar
  22. S.K. Jui, A.B. Kamaraj, M.M. Sundaram, J. Manuf. Process. 15, 460 (2013)CrossRefGoogle Scholar
  23. G.M. Keller, Curr. Opin. Cell Biol. 7, 862 (1995)CrossRefGoogle Scholar
  24. M. Khoury, A. Bransky, N. Korin, L.C. Konak, G. Enikolopov, I. Tzchori, S. Levenberg, Biomed. Microdevices 12, 1001 (2010)CrossRefGoogle Scholar
  25. D.-J. Kim, Y. Ahn, S.-H. Lee, Y.-K. Kim, Int. J. Mach. Tools Manuf. 46, 1064 (2006)CrossRefGoogle Scholar
  26. C. Kim, K.S. Lee, J.H. Bang, Y.E. Kim, M.-C. Kim, K.W. Oh, S.H. Lee, J.Y. Kang, Lab Chip 11, 874 (2011)CrossRefGoogle Scholar
  27. T. Kitamori, M. Tokeshi, A. Hibara, and K. Sato, Anal Chemistry 76, 52 A (2004)Google Scholar
  28. M. Koike, S. Sakaki, Y. Amano, H. Kurosawa, J. Biosci. Bioeng. 104, 294 (2007)CrossRefGoogle Scholar
  29. J. Kuncová-Kallio and P. J. Kallio, IEEE engineering in medicine and biology society. Conference 1d, 2486 (2006)Google Scholar
  30. H. Kurosawa, M. Kimura, T. Noda, Y. Amano, J. Biosci. Bioeng. 101, 26 (2006)CrossRefGoogle Scholar
  31. E. Leclerc, Y. Sakai, T. Fujii, Biomed. Microdevices 5, 109 (2003)CrossRefGoogle Scholar
  32. E. Leclerc, Y. Sakai, T. Fujii, Biotechnol. Prog. 20, 750 (2004)CrossRefGoogle Scholar
  33. J.N. Lee, C. Park, G.M. Whitesides, Anal. Chem. 75, 6544 (2003)CrossRefGoogle Scholar
  34. T. Ma, W.L. Grayson, M. Fröhlich, G. Vunjak-Novakovic, Biotechnol. Prog. 25, 32 (2009)CrossRefGoogle Scholar
  35. D.A. Markov, E.M. Lillie, S.P. Garbett, L.J. McCawley, Biomed. Microdevices 16, 91 (2014)CrossRefGoogle Scholar
  36. A. Mata, A.J. Fleischman, S. Roy, Biomed. Microdevices 7, 281 (2005)CrossRefGoogle Scholar
  37. C. Megan, S. Daniel, Front. Oncol. 4, 285 (2014)Google Scholar
  38. J.C. Mikkelsen, Appl. Phys. Lett. 45, 1187 (1984)CrossRefGoogle Scholar
  39. A. Mogi, S. Takei, H. Shimizu, H. Miura, D. Tomotsune, K. Sasaki, J. Med. Biol. Eng. 34, 101 (2014)CrossRefGoogle Scholar
  40. Nippon Electric Glass Manufacturer’s catalogue for products, 26 (n.d.)Google Scholar
  41. B.A. Nsiah, T. Ahsan, S. Griffiths, M. Cooke, R.M. Nerem, T.C. McDevitt, Tissue Eng. Part A 20, 954 (2014)CrossRefGoogle Scholar
  42. P.E. Oomen, M.D. Skolimowski, E. Verpoorte, Lab Chip 16, 3394 (2016)CrossRefGoogle Scholar
  43. A.-G. Pawlowski, E. Belloy, A. Sayah, M.A.M. Gijs, Microelectron. Eng. 67–68, 557 (2003)CrossRefGoogle Scholar
  44. M. Polinkovsky, E. Gutierrez, A. Levchenko, A. Groisman, Lab Chip 9, 1073 (2009)CrossRefGoogle Scholar
  45. E.K. Sackmann, A.L. Fulton, D.J. Beebe, Nature 507, 181 (2014)CrossRefGoogle Scholar
  46. S. Satoh, I. Matsuyama, K. Susa, J. Non-Cryst. Solids 190, 206 (1995)CrossRefGoogle Scholar
  47. S. Stolberg, K.E. McCloskey, Biotechnol. Prog. 25, 10 (2009)CrossRefGoogle Scholar
  48. K. Sugioka, Y. Cheng, Lab Chip 12, 3576 (2012)CrossRefGoogle Scholar
  49. A. Szameit, F. Dreisow, and S. Nolte, 123, 3 (2012)Google Scholar
  50. S. Takahashi, K. Tatsukoshi, M. Ono, M. Mikayama, and N. Imajo, International Symposium on Microelectronics 2013, 631 (2013)Google Scholar
  51. E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, T. Kitamori, Anal. Chem. 74, 1560 (2002)CrossRefGoogle Scholar
  52. Y. Tanaka, Micromachines 5, 289 (2014)CrossRefGoogle Scholar
  53. Y. Tanaka, M. Yamato, T. Okano, T. Kitamori, K. Sato, Meas. Sci. Technol. 17, 3167 (2006)CrossRefGoogle Scholar
  54. M.W. Toepke, D.J. Beebe, Lab Chip 6, 1484 (2006)CrossRefGoogle Scholar
  55. H. Wei, B. Chueh, H. Wu, E.W. Hall, C. Li, R. Schirhagl, J.-M. Lin, R.N. Zare, Lab Chip 11, 238 (2011)CrossRefGoogle Scholar
  56. J.L. Wilson, S. Suri, A. Singh, C.A. Rivet, H. Lu, T.C. McDevitt, Biomed. Microdevices 16, 79 (2014)CrossRefGoogle Scholar
  57. C. Xu, M.S. Inokuma, J. Denham, K. Golds, P. Kundu, J.D. Gold, M.K. Carpenter, Nat. Biotechnol. 19, 971 (2001)CrossRefGoogle Scholar
  58. Y. Yalikun, Y. Hosokawa, T. Iino, Y. Tanaka, Lab Chip 16, 2427 (2016a)CrossRefGoogle Scholar
  59. Y. Yalikun, N. Tanaka, Y. Hosokawa, T. Iino, Y. Tanaka, Appl. Phys. Express 9, 66702 (2016b)CrossRefGoogle Scholar
  60. S.W. Youn, M. Takahashi, H. Goto, R. Maeda, Microelectron. Eng. 83, 2482 (2006)CrossRefGoogle Scholar
  61. Z. Zheng, K. Wu, Y. Hsu, F. Huang, and B. Yan, in Asian Electrical Machining Symposium 2007 (2007), p. 98–103Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratory for Integrated Biodevice, Quantitative Biology CenterRIKENSuitaJapan
  2. 2.Graduate School of Materials ScienceNara Institute of Science and TechnologyIkomaJapan

Personalised recommendations