Biomedical Microdevices

, 19:83 | Cite as

A flexible cell concentrator using inertial focusing

  • Chunglong Tu
  • Jian ZhouEmail author
  • Yitao Liang
  • Bobo Huang
  • Yifeng Fang
  • Xiao Liang
  • Xuesong YeEmail author


Cell concentration adjustment is intensively implemented routinely both in research and clinical laboratories. Centrifuge is the most prevalent technique for tuning biosample concentration. But it suffers from a number of drawbacks, such as requirement of experienced operator, high cost, low resolution, variable reproducibility and induced damage to sample. Herein we report on a cost-efficient alternative using inertial microfluidics. While the majority of existing literatures concentrate on inertial focusing itself, we identify the substantial role of the outlet system played in the device performance that has long been underestimated. The resistances of the outlets virtually involve in defining the cutoff size of a given inertial filtration channel. Following the comprehensive exploration of the influence of outlet system, we designed an inertial device with selectable outlets. Using both commercial microparticles and cultured Hep G2 cells, we have successfully demonstrated the automated concentration modification and observed several key advantages of our device as compared with conventional centrifuge, such as significantly reduced cell loss (only 4.2% vs. ~40% of centrifuge), better preservation of cell viability and less processing time as well as the increased reproducibility due to absence of manual operation. Furthermore, our device shows high effectiveness for concentrated sample (e.g., 1.8 × 106 cells/ml) as well. We envision its promising applications in the circumstance where repetitive sample preparation is intensely employed.


Automated cell concentration Inertial focusing channel resistances Microfluidic concentrator Lab on a chip Centrifuge Hep G2 cells 



We gratefully acknowledge partial support by the National Science Foundation of China (under grant no. 81501614, no. 81171416 and 61501400) and a grant by the Fundamental Research Funds for the Central Universities with grant no. 2014QNA5015. We also acknowledge partial support from Health and Family Planning Commission of Zhejiang Province (no. 2014RCA010).

Supplementary material

10544_2017_223_MOESM1_ESM.docx (372 kb)
ESM 1 (DOCX 372 kb)


  1. H. Amini, W. Lee, D. Di Carlo, Lab Chip 14, 2739 (2014)CrossRefGoogle Scholar
  2. A.A.S. Bhagat, S.S. Kuntaegowdanahalli, I. Papautsky, Lab Chip 8, 1906 (2008)CrossRefGoogle Scholar
  3. A.J. Chung, D.R. Gossett, D. Di Carlo, Small 9, 685 (2013)CrossRefGoogle Scholar
  4. R. Cornish, Proc. R. Soc. A 120, 691 (1928)CrossRefGoogle Scholar
  5. F. Cui, M. Rhee, A. Singh, A. Tripathi, Annu. Rev. Biomed. Eng. 17, 267 (2015)CrossRefGoogle Scholar
  6. D. Di Carlo, D. Irimia, R.G. Tompkins, M. Toner, Proc. Natl. Acad. Sci. U. S. A. 104, 18892 (2007)CrossRefGoogle Scholar
  7. P.S. Dittrich, A. Manz, Nat. Rev. Drug Discov. 5, 210 (2006)CrossRefGoogle Scholar
  8. L.A. Filla, K.L. Sanders, R.T. Filla, J.L. Edwards, Analyst 141, 3858 (2016)CrossRefGoogle Scholar
  9. V. Gupta, I. Jafferji, M. Garza, V.O. Melnikova, D.K. Hasegawa, R. Pethig, D.W. Davis, Biomicrofluidics 6, 24133 (2012)CrossRefGoogle Scholar
  10. L.R. Huang, E.C. Cox, R.H. Austin, J.C. Sturm, Science 304, 987 (2004)CrossRefGoogle Scholar
  11. S.C. Hur, A.J. Mach, D. Di Carlo, Biomicrofluidics 5, 022206 (2011)CrossRefGoogle Scholar
  12. T.Z. Jubery, S.K. Srivastava, P. Dutta, Electrophoresis 35, 691 (2014)CrossRefGoogle Scholar
  13. S.S. Kuntaegowdanahalli, A.A.S. Bhagat, G. Kumar, I. Papautsky, Lab Chip 9, 2973 (2009)CrossRefGoogle Scholar
  14. A.J. Mach, D. Di Carlo, Biotechnol. Bioeng. 107, 302 (2010)CrossRefGoogle Scholar
  15. J.M. Martel, M. Toner, Inertial focusing in microfluidics. Annu. Rev. Biomed. Eng. 16, 371 (2014)CrossRefGoogle Scholar
  16. J.M. Martel, K.C. Smith, M. Dlamini, K. Pletcher, J. Yang, M. Karabacak, D.A. Haber, R. Kapur, M. Toner, Sci Rep 5, 11300 (2015)CrossRefGoogle Scholar
  17. J. McGrath, M. Jimeneza, H. Bridle, Lab Chip 14, 4139 (2014)CrossRefGoogle Scholar
  18. M. Nordin, T. Laurell, Lab Chip 12, 4610 (2012)CrossRefGoogle Scholar
  19. K.W. Oh, K. Lee, B. Ahn, E.P. Furlani, Lab Chip 12, 515 (2012)CrossRefGoogle Scholar
  20. B.W. Peterson, P.K. Sharma, H.C. van der Mei, H.J. Busscher, Appl. Environ. Microbiol. 78, 120 (2012)CrossRefGoogle Scholar
  21. A.E. Reece, K. Kaastrup, H.D. Sikes, J. Oakey, RSC Adv. 5, 53857 (2015)CrossRefGoogle Scholar
  22. L. Ren, Y. Chen, P. Li, Z. Mao, P.H. Huang, J. Rufo, F. Guo, L. Wang, J.P. McCoy, S.J. Levine, T.J. Huang, Lab Chip 15, 3870 (2015)CrossRefGoogle Scholar
  23. G. Segré, A. Silberberg, Nature 189, 209 (1961)CrossRefGoogle Scholar
  24. J. Shi, X. Mao, D. Ahmed, A. Colletti, T.J. Huang, Lab Chip 8, 221 (2008)CrossRefGoogle Scholar
  25. J. Voldman, Annu. Rev. Biomed. Eng. 8, 425 (2006)CrossRefGoogle Scholar
  26. X. Wang, I. Papautsky, Lab Chip 15, 1350 (2015)CrossRefGoogle Scholar
  27. X. Wang, J. Zhou, I. Papautsky, Biomicrofluidics 7, 044119 (2013)CrossRefGoogle Scholar
  28. M.E. Warkiani, G. Guan, K.B. Luan, W.C. Lee, A.A.S. Bhagat, P. Kant Chaudhuri, D.S. Tan, W.T. Lim, S.C. Lee, P.C.Y. Chen, C.T. Lim, J. Han, Lab Chip 14, 128 (2014)CrossRefGoogle Scholar
  29. M.E. Warkiani, B.L. Khoo, L. Wu, A.K.P. Tay, A.A.S. Bhagat, J. Han, C.T. Lim, Nat. Protoc. 11, 134 (2016)CrossRefGoogle Scholar
  30. N. Xiang, Z. Ni, Biomed. Microdevices 17, 110 (2015)CrossRefGoogle Scholar
  31. J. Zhang, S. Yan, W. Li, G. Alici, N. Nguyen, RSC Adv. 4, 33149 (2014)CrossRefGoogle Scholar
  32. J. Zhang, S. Yan, R. Sluyter, W. Li, G. Alici, N. Nguyen, Sci Rep 4, 4527 (2014)CrossRefGoogle Scholar
  33. J. Zhang, S. Yan, D. Yuan, G. Alici, N. Nguyen, M. Ebrahimi Warkiani, W. Li, Lab Chip 16, 10 (2016)CrossRefGoogle Scholar
  34. J. Zhou, I. Papautsky, Lab Chip 13, 1121 (2013)CrossRefGoogle Scholar
  35. J. Zhou, S. Kasper, I. Papautsky, Microfluid. Nanofluid. 15, 611 (2013)CrossRefGoogle Scholar
  36. J. Zhou, P.V. Giridhar, S. Kasper, I. Papautsky, Lab Chip 13, 1919 (2013)CrossRefGoogle Scholar
  37. J. Zhou, P.V. Giridhar, S. Kasper, I. Papautsky, Biomicrofluidics 8, 044112 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of EducationZhejiang UniversityHangzhouChina
  2. 2.Department of Biomedical EngineeringZhejiang UniversityHangzhouChina
  3. 3.State Key Laboratory of CAD&CGZhejiang UniversityHangzhouChina
  4. 4.Department of General Surgery, Sir Run Run Shaw Hospital, College of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations