Biomedical Microdevices

, 19:74 | Cite as

Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun membrane for 3D cell culture

  • Hajar Moghadas
  • Mohammad Said SaidiEmail author
  • Navid Kashaninejad
  • Amir Kiyoumarsioskouei
  • Nam-Trung NguyenEmail author


This paper reports the fabrication of electrospun polydimethylsiloxane (PDMS) membranes/scaffolds that are suitable for three-dimensional (3D) cell culture. Through modification the ratio between PDMS and polymethylmethacrylate (PMMA) as carrier polymer, we report the possibility of increasing PDMS weight ratio of up to 6 for electrospinning. Increasing the PDMS content increases the fiber diameter, the pore size, and the hydrophobicity. To our best knowledge, this is the first report describing beads-free, durable and portable electrospun membrane with maximum content of PDMS suitable for cell culture applications. To show the proof-of-concept, we successfully cultured epithelial lung cancer cells on these membranes in a static well plate without surface modification. Surprisingly, due to three-dimensional (3D) and hydrophobic nature of the electrospun fibers, cells aggregated into 3D multicellular spheroids. These easily detachable and cost-effective scaffolds with controllable thicknesses and high tensile strength are good candidates for cell-stretching devices, organ-on-a-chip devices, tissue engineering and studies of non-adherent mammalian cancer stem cells.


PDMS membrane Electrospinning cell culture Hydrophobic nanofibers Spheroid formation Beads-free scaffolds 



We acknowledge the funds and support from Iran’s National Elite Foundation (INEF).

Author Contributions

All authors contributed to conducting the experiments and writing the manuscript.

Compliance with ethical standards

Conflicts of Interest

The authors declare no conflict of interest.


  1. R.L. Andersson, V. Ström, U.W. Gedde, P.E. Mallon, M.S. Hedenqvist, R.T. Olsson, Sci. Rep. 4, 6335 (2014)CrossRefGoogle Scholar
  2. G.M. Bayley, P.E. Mallon, Polymer. 53, 5523 (2012)CrossRefGoogle Scholar
  3. E. Boyacı, N. Horzum, A. Çağır, M.M. Demir, A.E. Eroğlu, RSC Adv. 3, 22261 (2013)CrossRefGoogle Scholar
  4. C. Carrizales, S. Pelfrey, R. Rincon, T.M. Eubanks, A. Kuang, M.J. McClure, G.L. Bowlin, J. Macossay, Polymer. Adv. Tech. 19, 124 (2008)CrossRefGoogle Scholar
  5. A. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944)CrossRefGoogle Scholar
  6. M. Chen, C. Wang, W. Fang, J. Wang, W. Zhang, G. Jin, G. Diao, Langmuir. 29, 11858 (2013)CrossRefGoogle Scholar
  7. W. Chen, R.H.W. Lam, J. Fu, Lab Chip. 12, 391 (2012)CrossRefGoogle Scholar
  8. J. Fang, H. Shao, H. Niu and T. Lin, in Handbook of Smart Textiles, ed. By X. Tao (Springer, Singapore, 2014), p. 1Google Scholar
  9. G. Firpo, E. Angeli, L. Repetto, U. Valbusa, J. Membr. Sci. 481, 1 (2015)CrossRefGoogle Scholar
  10. M. Haerst, V. Seitz, M. Ahrens, C. Boudot and E. Wintermante, in 6th European Conference of the International Federation for Medical and Biological Engineering (Dubrovnik, Croatia, 2014), pp. 537–540.
  11. S. Homaeigohar, M. Elbahri, Materials. 7, 1017 (2014).
  12. D. Huh, H.J. Kim, J.P. Fraser, D.E. Shea, M. Khan, A. Bahinski, G.A. Hamilton, D.E. Ingber, Nat. Protoc. 8, 2135 (2013)CrossRefGoogle Scholar
  13. D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H.Y. Hsin, D.E. Ingber, Science. 328, 1662 (2010)CrossRefGoogle Scholar
  14. R. Igreja, H. Domingos, J.P. Borges, C. Dias, Mater. Sci. Forum. 730-732, 197 (2013)CrossRefGoogle Scholar
  15. L. Jamalzadeh, H. Ghafoori, R. Sariri, H. Rabuti, J. Nasirzade, H. Hasani, M.R. Aghamaali, Avicenna J. Med. Biochem. 4, e33453 (2016)Google Scholar
  16. N. Kashaninejad, M.R. Nikmaneshi, H. Moghadas, A. Kiyoumarsi Oskouei, M. Rismanian, M. Barisam, M.S. Saidi, B. Firoozabadi, Micromachines. 7, 130 (2016)CrossRefGoogle Scholar
  17. S. Kaur, S. Sundarrajan, D. Rana, R. Sridhar, R. Gopal, T. Matsuura, S. Ramakrishna, J. Mater. Sci. 49, 6143 (2014)CrossRefGoogle Scholar
  18. I.-D. Kim, S.-J. Choi and W.-H. Ryu, In Handbook of Nanomaterials Properties, ed. By B. Bhushan, D. Luo, S.R. Schricker, W. Sigmund, S. Zauscher (Springer, Berlin, 2014), p. 793Google Scholar
  19. Y.B. Kim, D. Cho, W.H. Park, J. Appl. Polym. Sci. 114, 3870 (2009)CrossRefGoogle Scholar
  20. J. Matulevicius, L. Kliucininkas, D. Martuzevicius, E. Krugly, M. Tichonovas, J. Baltrusaitis, J. Nanomater. 2014, 14 (2014)CrossRefGoogle Scholar
  21. N.-T. Nguyen, M. Hejazian, C.H. Ooi, N. Kashaninejad, Micromachines. 8, 186 (2017)CrossRefGoogle Scholar
  22. H. Niu, H. Wang, H. Zhou, T. Lin, RSC Adv. 4, 11782 (2014)CrossRefGoogle Scholar
  23. Q.P. Pham, U. Sharma, A.G. Mikos, Tissue Eng. 12, 1197 (2006)CrossRefGoogle Scholar
  24. A. Raza, Y. Li, J. Sheng, J. Yu and B. Ding, in Electrospun Nanofibers for Energy and Environmental Applications, ed. By B. Ding, J. Yu (Springer, Berlin, 2014), p. 355Google Scholar
  25. L.-F. Ren, F. Xia, J. Shao, X. Zhang, J. Li, Desalination. 404, 155 (2017)CrossRefGoogle Scholar
  26. D. Serbezeanu, A.M. Popa, T. Stelzig, I. Sava, R.M. Rossi, G. Fortunato, Text. Res. J. 85, 1763 (2015)CrossRefGoogle Scholar
  27. T.J. Sill, H.A. von Recum, Biomaterials. 29, 1989 (2008)CrossRefGoogle Scholar
  28. D.F. Stamatialis, B.J. Papenburg, M. Gironés, S. Saiful, S.N. Bettahalli, S. Schmitmeier, M. Wessling, J. Membr. Sci. 308, 1 (2008)CrossRefGoogle Scholar
  29. S. Tungprapa, I. Jangchud, P. Ngamdee, M. Rutnakornpituk, P. Supaphol, Mater. Lett. 60, 2920 (2006)CrossRefGoogle Scholar
  30. R. Xue, P. Behera, J. Xu, M.S. Viapiano, J.J. Lannutti, Sens. Actuator B-Chem. 192, 697 (2014)CrossRefGoogle Scholar
  31. D. Yang, X. Liu, Y. Jin, Y. Zhu, D. Zeng, X. Jiang, H. Ma, Biomacromolecules. 10, 3335 (2009)CrossRefGoogle Scholar
  32. E. Yilgor, O. Kaymakci, M. Isik, S. Bilgin, I. Yilgor, Appl. Surf. Sci. 258, 4246 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Mechanical EngineeringSharif University of TechnologyTehranIran
  2. 2.Queensland Micro- and Nanotechnology Centre, Nathan CampusGriffith UniversityBrisbaneAustralia

Personalised recommendations