Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rapid prototyping and parametric optimization of plastic acoustofluidic devices for blood–bacteria separation

Abstract

Acoustic manipulation has emerged as a versatile method for microfluidic separation and concentration of particles and cells. Most recent demonstrations of the technology use piezoelectric actuators to excite resonant modes in silicon or glass microchannels. Here, we focus on acoustic manipulation in disposable, plastic microchannels in order to enable a low-cost processing tool for point-of-care diagnostics. Unfortunately, the performance of resonant acoustofluidic devices in plastic is hampered by a lack of a predictive model. In this paper, we build and test a plastic blood–bacteria separation device informed by a design of experiments approach, parametric rapid prototyping, and screening by image-processing. We demonstrate that the new device geometry can separate bacteria from blood while operating at 275% greater flow rate as well as reduce the power requirement by 82%, while maintaining equivalent separation performance and resolution when compared to the previously published plastic acoustofluidic separation device.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Listing 1
Fig. 3
Listing 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. M.D. Abràmoff, P.J. Magalhães, S.J. Ram, Image processing with imagej. Biophoton. Int. 11(7), 36–43 (2004)

  2. J.D. Adams, C.L. Ebbesen, R. Barnkob, A.H. Yang, H.T. Soh, H. Bruus, High-throughput, temperature-controlled microchannel acoustophoresis device made with rapid prototyping. J. Micromech. Microeng. 22(7), 075017 (2012)

  3. M. Antfolk, T. Laurell, Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood–a review. Analytica Chimica Acta (2017)

  4. L. Arge, M. De Berg, C. Tsirogiannis, in Algorithms for computing prominence on grid terrains. in Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM, 2013), pp. 254–263

  5. R. Barnkob, H. Bruus, Acoustofluidics: theory and simulation of radiation forces at ultrasound resonances in microfluidic devices. in Proceedings of Meetings on Acoustics 157ASA, Vol. 6 (ASA, 2009), p. 020001

  6. R. Barnkob, I. Iranmanesh, M. Wiklund, H. Bruus, Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method. Lab Chip 12(13), 2337–2344 (2012)

  7. A.A.S. Bhagat, H. Bow, H.W. Hou, S.J. Tan, J. Han, C.T. Lim, Microfluidics for cell separation. Med. Biol. Eng. Comput. 48(10), 999–1014 (2010)

  8. M. Bora, M. Shusteff, Efficient coupling of acoustic modes in microfluidic channel devices. Lab Chip 15(15), 3192–3202 (2015)

  9. G.E. Box, Improving almost anything: Ideas and essays, vol. 629. Wiley-Interscience (2006)

  10. H. Bruus, Acoustofluidics 2: Perturbation theory and ultrasound resonance modes. Lab Chip 12(1), 20–28 (2012)

  11. K.M. Carley, N.Y. Kamneva, J. Reminga, Response surface methodology. Technical report, DTIC Document (2004)

  12. H. Freeman, L.S. Davis, A corner-finding algorithm for chain-coded curves. IEEE Trans. Comput. 26(3), 297–303 (1977)

  13. F. Garofalo, T. Laurell, H. Bruus, Performance study of acoustophoretic microfluidic silicon-glass devices by characterization of material and geometry dependent frequency spectra. arXiv:1610.02794 (2016)

  14. P. Glynne-Jones, R.J. Boltryk, M. Hill, N.R. Harris, A new thin-reflector mode for ultrasonic particle manipulation in layered resonators. in 2009 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2009), pp. 2137–2140

  15. D.J. Guckenberger, T.E. De Groot, A.M. Wan, D.J. Beebe, E.W. Young, Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15(11), 2364–2378 (2015)

  16. P. Hahn, O. Schwab, J. Dual, Modeling and optimization of acoustofluidic micro-devices. Lab Chip 14(20), 3937–3948 (2014)

  17. M. Heckele, W. Schomburg, Review on micro molding of thermoplastic polymers. J. Micromech. Microeng. 14(3), R1 (2003)

  18. A.S. Hedayat, N.J.A. Sloane, J. Stufken, Orthogonal arrays: theory and applications. Springer Science & Business Media (2012)

  19. M. Hill, R.J. Townsend, N.R. Harris, Modelling for the robust design of layered resonators for ultrasonic particle manipulation. Ultrasonics 48(6), 521–528 (2008)

  20. A.I. Khuri, S. Mukhopadhyay, Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2(2), 128–149 (2010)

  21. M. Kintel, C. Wolf, Openscad. GNU General Public License, p GNU General Public License (2014)

  22. A. Lashkaripour, R. Sanka, J. Lippai, D. Densmore, Design automation based on fluid dynamics. in The Proceedings of the 9th International Workshop on Bio-Design Automation, (2017)

  23. A. Lenshof, A. Ahmad-Tajudin, K. Jarås, A.-M. Sward-Nilsson, L. Åberg, G. Marko-Varga, J. Malm, H. Lilja, T. Laurell, Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal. Chem. 81(15), 6030–6037 (2009)

  24. M.W. Ley, H. Bruus, Continuum modeling of hydrodynamic particle–particle interactions in microfluidic high-concentration suspensions. Lab Chip 16(7), 1178–1188 (2016)

  25. S. Li, F. Ma, H. Bachman, C.E. Cameron, X. Zeng, T.J. Huang, Acoustofluidic bacteria separation. J. Micromech. Microeng. 27(1), 015031 (2016)

  26. J. Lippai, R. Sanka, A. Lashkaripour, D. Densmore, Function-driven, graphical design tool for microfluidic chips: 3duf. in The Proceedings of the 9th International Workshop on Bio-Design Automation, (2017)

  27. J. McDaniel, W.H. Grover, P. Brisk, The case for semi-automated design of microfluidic very large scale integration (mvlsi) chips. in 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE) (IEEE, 2017), pp. 1793–1798

  28. A. Mueller, A. Lever, T. Nguyen, J. Comolli, J. Fiering, Continuous acoustic separation in a thermoplastic microchannel. J. Micromech. Microeng. 23(12), 125006 (2013)

  29. P.N. Nge, C.I. Rogers, A.T. Woolley, Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 113(4), 2550–2583 (2013)

  30. P. Ohlsson, M. Evander, K. Petersson, L. Mellhammar, A. Lehmusvuori, U. Karhunen, M. Soikkeli, T. Seppa, E. Tuunainen, A. Spangar, et al., Integrated acoustic separation, enrichment, and microchip polymerase chain reaction detection of bacteria from blood for rapid sepsis diagnostics. Anal. Chem. 88(19), 9403–9411 (2016)

  31. R. Sanka, J. Lippai, D. Densmore, mlsi design with mint. in The Proceedings of the 9th International Workshop on Bio-Design Automation, (2017)

  32. A.R. Selfridge, Approximate material properties in isotropic materials. IEEE Trans. Sonics Ultrason. 32(3), 381–394 (1985)

  33. M. Settnes, H. Bruus, Forces acting on a small particle in an acoustical field in a viscous fluid. Phys. Rev. E 85(1), 016327 (2012)

  34. R. Silva, R. Sanka, D. Densmore, Makerfluidics: Microfluidics for the masses. in The Proceedings of the 8th International Workshop on Bio-Design Automation, (2016), pp. 63–64

  35. D.P. Yen, Y. Ando, K. Shen, A cost-effective micromilling platform for rapid prototyping of microdevices. Technology 4(04), 234–239 (2016)

  36. Y. Yokoyama, et al., Taguchi methods: design of experiments, volume 4. Amer Supplier Institute (1993)

Download references

Acknowledgments

This research was made possible by the Draper Laboratory Fellowship program in conjunction with the US Air Force Academy Faculty Pipeline Fellowship. Douglas Densmore was funded in part by NSF Award #1522074.

Author information

Correspondence to R. Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 75.4 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silva, R., Dow, P., Dubay, R. et al. Rapid prototyping and parametric optimization of plastic acoustofluidic devices for blood–bacteria separation. Biomed Microdevices 19, 70 (2017). https://doi.org/10.1007/s10544-017-0210-3

Download citation

Keywords

  • Microfluidics
  • Acoustics
  • Blood
  • Bacteria
  • Separation
  • Acoustophoresis