Biomedical Microdevices

, 19:70 | Cite as

Rapid prototyping and parametric optimization of plastic acoustofluidic devices for blood–bacteria separation

  • R. Silva
  • P. Dow
  • R. Dubay
  • C. Lissandrello
  • J. Holder
  • D. Densmore
  • J. Fiering


Acoustic manipulation has emerged as a versatile method for microfluidic separation and concentration of particles and cells. Most recent demonstrations of the technology use piezoelectric actuators to excite resonant modes in silicon or glass microchannels. Here, we focus on acoustic manipulation in disposable, plastic microchannels in order to enable a low-cost processing tool for point-of-care diagnostics. Unfortunately, the performance of resonant acoustofluidic devices in plastic is hampered by a lack of a predictive model. In this paper, we build and test a plastic blood–bacteria separation device informed by a design of experiments approach, parametric rapid prototyping, and screening by image-processing. We demonstrate that the new device geometry can separate bacteria from blood while operating at 275% greater flow rate as well as reduce the power requirement by 82%, while maintaining equivalent separation performance and resolution when compared to the previously published plastic acoustofluidic separation device.


Microfluidics Acoustics Blood Bacteria Separation Acoustophoresis 



This research was made possible by the Draper Laboratory Fellowship program in conjunction with the US Air Force Academy Faculty Pipeline Fellowship. Douglas Densmore was funded in part by NSF Award #1522074.

Supplementary material

10544_2017_210_MOESM1_ESM.pdf (75 kb)
(PDF 75.4 KB)


  1. M.D. Abràmoff, P.J. Magalhães, S.J. Ram, Image processing with imagej. Biophoton. Int. 11(7), 36–43 (2004)Google Scholar
  2. J.D. Adams, C.L. Ebbesen, R. Barnkob, A.H. Yang, H.T. Soh, H. Bruus, High-throughput, temperature-controlled microchannel acoustophoresis device made with rapid prototyping. J. Micromech. Microeng. 22(7), 075017 (2012)CrossRefGoogle Scholar
  3. M. Antfolk, T. Laurell, Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood–a review. Analytica Chimica Acta (2017)Google Scholar
  4. L. Arge, M. De Berg, C. Tsirogiannis, in Algorithms for computing prominence on grid terrains. in Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM, 2013), pp. 254–263Google Scholar
  5. R. Barnkob, H. Bruus, Acoustofluidics: theory and simulation of radiation forces at ultrasound resonances in microfluidic devices. in Proceedings of Meetings on Acoustics 157ASA, Vol. 6 (ASA, 2009), p. 020001Google Scholar
  6. R. Barnkob, I. Iranmanesh, M. Wiklund, H. Bruus, Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method. Lab Chip 12(13), 2337–2344 (2012)CrossRefGoogle Scholar
  7. A.A.S. Bhagat, H. Bow, H.W. Hou, S.J. Tan, J. Han, C.T. Lim, Microfluidics for cell separation. Med. Biol. Eng. Comput. 48(10), 999–1014 (2010)CrossRefGoogle Scholar
  8. M. Bora, M. Shusteff, Efficient coupling of acoustic modes in microfluidic channel devices. Lab Chip 15(15), 3192–3202 (2015)CrossRefGoogle Scholar
  9. G.E. Box, Improving almost anything: Ideas and essays, vol. 629. Wiley-Interscience (2006)Google Scholar
  10. H. Bruus, Acoustofluidics 2: Perturbation theory and ultrasound resonance modes. Lab Chip 12(1), 20–28 (2012)CrossRefGoogle Scholar
  11. K.M. Carley, N.Y. Kamneva, J. Reminga, Response surface methodology. Technical report, DTIC Document (2004)Google Scholar
  12. H. Freeman, L.S. Davis, A corner-finding algorithm for chain-coded curves. IEEE Trans. Comput. 26(3), 297–303 (1977)CrossRefGoogle Scholar
  13. F. Garofalo, T. Laurell, H. Bruus, Performance study of acoustophoretic microfluidic silicon-glass devices by characterization of material and geometry dependent frequency spectra. arXiv:1610.02794 (2016)
  14. P. Glynne-Jones, R.J. Boltryk, M. Hill, N.R. Harris, A new thin-reflector mode for ultrasonic particle manipulation in layered resonators. in 2009 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2009), pp. 2137–2140Google Scholar
  15. D.J. Guckenberger, T.E. De Groot, A.M. Wan, D.J. Beebe, E.W. Young, Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15(11), 2364–2378 (2015)CrossRefGoogle Scholar
  16. P. Hahn, O. Schwab, J. Dual, Modeling and optimization of acoustofluidic micro-devices. Lab Chip 14(20), 3937–3948 (2014)CrossRefGoogle Scholar
  17. M. Heckele, W. Schomburg, Review on micro molding of thermoplastic polymers. J. Micromech. Microeng. 14(3), R1 (2003)CrossRefGoogle Scholar
  18. A.S. Hedayat, N.J.A. Sloane, J. Stufken, Orthogonal arrays: theory and applications. Springer Science & Business Media (2012)Google Scholar
  19. M. Hill, R.J. Townsend, N.R. Harris, Modelling for the robust design of layered resonators for ultrasonic particle manipulation. Ultrasonics 48(6), 521–528 (2008)CrossRefGoogle Scholar
  20. A.I. Khuri, S. Mukhopadhyay, Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2(2), 128–149 (2010)CrossRefGoogle Scholar
  21. M. Kintel, C. Wolf, Openscad. GNU General Public License, p GNU General Public License (2014)Google Scholar
  22. A. Lashkaripour, R. Sanka, J. Lippai, D. Densmore, Design automation based on fluid dynamics. in The Proceedings of the 9th International Workshop on Bio-Design Automation, (2017)Google Scholar
  23. A. Lenshof, A. Ahmad-Tajudin, K. Jarås, A.-M. Sward-Nilsson, L. Åberg, G. Marko-Varga, J. Malm, H. Lilja, T. Laurell, Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal. Chem. 81(15), 6030–6037 (2009)CrossRefGoogle Scholar
  24. M.W. Ley, H. Bruus, Continuum modeling of hydrodynamic particle–particle interactions in microfluidic high-concentration suspensions. Lab Chip 16(7), 1178–1188 (2016)CrossRefGoogle Scholar
  25. S. Li, F. Ma, H. Bachman, C.E. Cameron, X. Zeng, T.J. Huang, Acoustofluidic bacteria separation. J. Micromech. Microeng. 27(1), 015031 (2016)CrossRefGoogle Scholar
  26. J. Lippai, R. Sanka, A. Lashkaripour, D. Densmore, Function-driven, graphical design tool for microfluidic chips: 3duf. in The Proceedings of the 9th International Workshop on Bio-Design Automation, (2017)Google Scholar
  27. J. McDaniel, W.H. Grover, P. Brisk, The case for semi-automated design of microfluidic very large scale integration (mvlsi) chips. in 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE) (IEEE, 2017), pp. 1793–1798Google Scholar
  28. A. Mueller, A. Lever, T. Nguyen, J. Comolli, J. Fiering, Continuous acoustic separation in a thermoplastic microchannel. J. Micromech. Microeng. 23(12), 125006 (2013)CrossRefGoogle Scholar
  29. P.N. Nge, C.I. Rogers, A.T. Woolley, Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 113(4), 2550–2583 (2013)CrossRefGoogle Scholar
  30. P. Ohlsson, M. Evander, K. Petersson, L. Mellhammar, A. Lehmusvuori, U. Karhunen, M. Soikkeli, T. Seppa, E. Tuunainen, A. Spangar, et al., Integrated acoustic separation, enrichment, and microchip polymerase chain reaction detection of bacteria from blood for rapid sepsis diagnostics. Anal. Chem. 88(19), 9403–9411 (2016)CrossRefGoogle Scholar
  31. R. Sanka, J. Lippai, D. Densmore, mlsi design with mint. in The Proceedings of the 9th International Workshop on Bio-Design Automation, (2017)Google Scholar
  32. A.R. Selfridge, Approximate material properties in isotropic materials. IEEE Trans. Sonics Ultrason. 32(3), 381–394 (1985)CrossRefGoogle Scholar
  33. M. Settnes, H. Bruus, Forces acting on a small particle in an acoustical field in a viscous fluid. Phys. Rev. E 85(1), 016327 (2012)CrossRefGoogle Scholar
  34. R. Silva, R. Sanka, D. Densmore, Makerfluidics: Microfluidics for the masses. in The Proceedings of the 8th International Workshop on Bio-Design Automation, (2016), pp. 63–64Google Scholar
  35. D.P. Yen, Y. Ando, K. Shen, A cost-effective micromilling platform for rapid prototyping of microdevices. Technology 4(04), 234–239 (2016)CrossRefGoogle Scholar
  36. Y. Yokoyama, et al., Taguchi methods: design of experiments, volume 4. Amer Supplier Institute (1993)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Boston University Department of Electrical and Computer EngineeringBostonUSA
  2. 2.Biological Design CenterBostonUSA
  3. 3.DraperCambridgeUSA

Personalised recommendations