Advertisement

Biomedical Microdevices

, 19:66 | Cite as

Combination of antibody-coated, physical-based microfluidic chip with wave-shaped arrays for isolating circulating tumor cells

  • Hongmei ChenEmail author
  • Baoshan Cao
  • Hongda Chen
  • Yu-Sheng Lin
  • Jingjing Zhang
Article

Abstract

Circulating tumor cells (CTCs) are found in the peripheral blood of patients with metastatic cancers, which have critical significance in cancer prognosis and diagnostics. Enumeration is significantly valuable since number of CTCs is strongly correlated to severity of disease. This article is proposed and demonstrated an antibody-coated, size-based microfluidic chip with wave-shaped arrays could efficiently capture CTCs combining two separation methods of both size- and deformability-based and affinity-based segregation. Utilizing immunocapture of capture chemistry of Epithelial Cell Adhension Molecule (EpCAM), tumor cells could be captured by narrow gaps or have a friction with microposts edges to realize both immune-affinity and size capture. This wave-shaped layout of microfluidic chip with varying gaps between adjacent circular microposts can generate perpendicular velocities to the fluidic direction. This oriented fluidic direction will carry cells to next smaller neighboring gap and then be captured gradually. The experiment results indicate capture efficiency is ~90% and viability is ~95% after extracted and cultured 3 days. Furthermore, this chip has been validated for whole blood with cancer cell lines and mimic patient blood. This study demonstrates feasibility using our microfluidic chip for CTCs research, monitoring cancer progress and evaluating therapeutic treatment.

Keywords

Circulating tumor cells (CTCs) Epithelial cell adhension molecule (EpCAM) Epithelial-to-mesenchymal transition (EMT) 

Notes

Acknowledgements

This research work was supported by the Major State Basic Research Development Program of China (973 Program) (Grant No. 2011CB933102), National Natural Science Foundation of China (Key Program, Grant No. 61335010), Key Research Program of Chinese Academy of Sciences (Grant No. KJZD-EW-TZ-L03-6) and Postdoctoral Research Funding (Grant No.2014 M550794). We deeply appreciate Prof. Yu-Sheng Lin from Sun Yat-Sen University helped with editing and revising the manuscript. Jingjing zhang from Xi’ an Technological University helped with simulation. Prof. Fan from Florida University, Prof. Chen from École Normale Supérieure (ENS) and Prof. Yang from Chinese Academy of Sciences offered deep discussion. Zhaoxin Geng, Graduate student Hongsheng Gao and Xiaoqing Lv from Chinese Academy of Sciences helped with design and modification, respectively. Graduate student Zhili Wang from Chinese Academy of Sciences helped to culture cells. Barbara Costello offered help for revising the manuscript.

References

  1. A.A. Adams, P.I. Okagbare, J. Feng, M.L. Hupert, D. Patterson, J. Gottert, R.L. McCarley, D. Nikitopoulos, M.C. Murphy, S.A. Soper, Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J. Am. Chem. Soc. 130, 8633–8641 (2008)CrossRefGoogle Scholar
  2. S.A. Bustin, S. Siddiqi, S. Ahmed, S. Dorudi, Quantification of cytokeratin 20, carcinoembryonic antigen and guanylyl cyclase C mRNA levels in lymph nodes may not predict treatment failure in colorectal cancer patients. Int. J. Cancer 108, 412–417 (2004)CrossRefGoogle Scholar
  3. J. Chelly, J.P. Concordet, J.C. Kaplan, A. Kahn, Illegitimate transcription: Transcription of any gene in any cell type. Proc. Natl. Acad. Sci. U. S. A. 86, 2617–2621 (1989)CrossRefGoogle Scholar
  4. J. Chung, D. Issadore, A. Ullal, K. Lee, R. Weissleder, H. Lee, Rare cell isolation and profiling on a hybrid magnetic/size-sorting chip. Biomicrofluidics 7, 054107 (2013)CrossRefGoogle Scholar
  5. E. Crowley, N.F. Di, F. Loupakis, A. Bardelli, Liquid biopsy: Monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 10, 472–484 (2013)CrossRefGoogle Scholar
  6. I. Desitter, B.S. Guerrouahen, N. Benali-Furet, J. Wechsler, P.A. Janne, Y. Kuang, M. Tanagita, L. Wang, J.A. Berkowitz, R.J. Distel, Y.E. Cayre, A new device for rapid isolation by size and characterization of rare circulating tumor cells. Anticancer Res. 31, 427–441 (2011)Google Scholar
  7. Y. Dong, A.M. Skelley, K.D. Merdek, K.M. Sprott, C. Jiang, W.E. Pierceall, J. Lin, M. Stocum, W.P. Carney, D.A. Smirnov, Microfluidics and circulating tumor cells. J. Molecular Diagnostics 15, 149–157 (2013)CrossRefGoogle Scholar
  8. Z. Du, K.H. Cheng, M. Vaughn, N.L. Collie, L.S. Gollahon, Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device. Biomed. Microdevices 9, 35–42 (2007)CrossRefGoogle Scholar
  9. J.P. Gleghorn, E.D. Pratt, D. Denning, H. Liu, N.H. Bander, S. Tagawa, D.M. Nanus, P.A. Giannakakou, B.J. Kirby, Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture and a prostate-specific antibody. Lab Chip 10, 27–29 (2010)CrossRefGoogle Scholar
  10. J.H. He, J. Reboud, H. Ji, L. Zhang, Y. Long, C. Lee, Biomicrofluidic lab-on-chip device for cancer cell detection. Appl. Phys. Lett. 93, 223905 (2008)CrossRefGoogle Scholar
  11. J.H. He, J. Reboud, H.M. Ji, Development of microfluidic device and system for breast cancer cell fluorescence detection. J. Vac. Sci. & Technol. B. 27, 1295–1298 (2009)CrossRefGoogle Scholar
  12. N.M. Karabacak, P.S. Spuhler, F. Fachin, E.J. Lim, V. Pai, E. Ozkumur, J.M. Martel, N. Kojic, K. Smith, P. Chen, J. Yang, H. Hwang, B. Morgan, J. Trautwein, T.A. Barber, S.L. Stott, S. Maheswaran, R. Kapur, A.A. Haber, M. Toner, Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nature 9 (2014)Google Scholar
  13. P. Katharina, C. Oumar, K. Andreas, K. Sabine, M. Nele, G. Mieczyslaw, K. Torsten, J. Cornelia, H. Ulrike, A.H. Annelore, R. Carola, P. Ulrich, R. Ingo, H. Klaus, Monitoring the response of circulating epithelial tumor cells to adjuvant chemotherapy in breast cancer allows detection of patients at risk of early relapse. J. Clin. Oncol. 26, 1208–1215 (2008)CrossRefGoogle Scholar
  14. T. Kumeria, M.D. Kurkuri, K.R. Diener, L. Parkinson, D. Losic, Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells. Biosens. Bioelectron. 15, 167–173 (2012)CrossRefGoogle Scholar
  15. M.G. Lee, J.H. Shin, C.Y. Bae, S. Choi, J.K. Park, Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress. Anal. Chem. 85, 6213–6218 (2013)CrossRefGoogle Scholar
  16. K.J. Luzzi, I.C. MacDonald, E.E. Schmidt, N. Kerkvliet, V.L. Morris, A.F. Chambers, A.C. Groom, Multistep nature of metastatic inefficiency. Am. J. Pathol. 153, 865–873 (1998)CrossRefGoogle Scholar
  17. P. Lv, Z. Tang, X. Liang, M. Guo, R.P.S. Han, Spatially gradated segregation and recovery of circulating tumor cells from peripheral blood of cancer patients. Biomicrofluidics 7, 034109 (2013)CrossRefGoogle Scholar
  18. S. Mocellin, D. Hoon, A. Ambrosi, D. Nitti, C.R. Rossi, The prognostic value of circulating tumor cells in patients with melanoma: A systematic review and meta-analysis. Clin. Cancer Res. 12, 4605–4613 (2006)CrossRefGoogle Scholar
  19. H. Mohamed, M. Murray, J.N. Turner, M. Caggana, Isolation of tumor cells using size and deformation. J. Chromatogr. A 1216, 8289–8295 (2009)CrossRefGoogle Scholar
  20. V. Murlidhar, M. Zeinali, S. Grabauskiene, M. Ghannad-Rezaie, M.S. Wicha, D.M. Simeone, N. Ramnath, R.M. Reddy, S. Nagrath, A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells. Small 10, 4895–4904 (2014)CrossRefGoogle Scholar
  21. S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007)CrossRefGoogle Scholar
  22. K. Pantel, R.H. Brakenhoff, B. Brandt, Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 8, 329–340 (2008)CrossRefGoogle Scholar
  23. J.A. Phillips, Y. Xu, Z. Xia, Z.H. Fan, W. Tan, Enrichment of cancer cells using aptamers immobilized on a Microfluidic Channel. Anal. Chem. 81, 1033–1039 (2009)CrossRefGoogle Scholar
  24. K. Polyak, R.A. Weinberg, Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat. Rev. Cancer 9, 265–273 (2009)CrossRefGoogle Scholar
  25. P. Preira, V. Grandné, J.M. Forel, S. Gabriele, M. Camara, O. Theodoly, Passive circulating cell sorting by deformability using a microfluidic gradual filter. Lab Chip 13, 161–170 (2013)CrossRefGoogle Scholar
  26. X. Qin, S. Park, S.P. Duffy, K. Matthews, R.R. Ang, T. Todenhöfer, H. Abdi, A. Azad, J. Bazov, K.N. Chi, P.C. Black, H. Ma, Size and deformability based separation of circulating tumor cells from castrate resistant prostate cancer patients using resettable cell traps. Lab Chip 15, 2278–2286 (2015)CrossRefGoogle Scholar
  27. S. Riethdorf, H. Wikman, K. Pantel, Review: Biological relevance of disseminated tumor cells in cancer patients. Int. J. Cancer 123, 1991–2006 (2008)CrossRefGoogle Scholar
  28. N. Shao, E. Wickstrom, B. Panchapakesan, Nanotube–antibody biosensor arrays for the detection of circulating breast cancer cells. Nanotechnology 19, 465101 (2008)CrossRefGoogle Scholar
  29. W. Sheng, T. Chen, R. Kamath, X. Xiong, W. Tan, Z.H. Fan, Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device. Anal. Chem. 84, 4199–4206 (2012)CrossRefGoogle Scholar
  30. W. Sheng, T. Chen, W. Tan, Z.H. Fan, Multivalent DNA Nanospheres for enhanced capture of cancer cells in microfluidic devices. ACS Nano 7, 7067–7076 (2013)CrossRefGoogle Scholar
  31. M. Shyamala, V.S. Lecia, N. Sunitha, U. Lindsey, B. Brian, V.C. Chey, I. Elizabeth, D. Sven, A. JI, W.B. Daphne, D. Subba, M. Alona, I. Daniel, S. Jeffrey, G.T. Ronald, J.L. Thomas, T. Mehmet, A.H. Daniel, Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008)CrossRefGoogle Scholar
  32. E. Sollier, D.E. Go, J. Che, D.R. Gossett, S. O'Byrne, W.M. Weaver, N. Kummer, M. Rettig, J. Goldman, N. Nickols, S. McCloskey, R.P. Kulkarni, D.D. Carlo, Size-selective collection of circulating tumor cells using vortex technology. Lab Chip 14, 63–77 (2014)CrossRefGoogle Scholar
  33. S.L. Stott, C.H. Hsu, D.I. Tsukrov, M. Yu, D.T. Miyamoto, B.A. Waltman, S.M. Rothenberg, A.M. Shah, M.E. Smas, G.K. Korir, F.P. Floyd, A.J. Gilman Jr., J.B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L.V. Sequist, R.J. Lee, K.J. Isselbacher, S. Maheswaran, D.A. Haber, M. Toner, Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. U. S. A. 107, 18392–18397 (2010)CrossRefGoogle Scholar
  34. S.J. Tan, L. Yobas, G.Y.H. Lee, C.N. Ong, C.T. Lim, Microdevice for the isolation and enumeration of cancer cells from blood. Biomed. Microdevices 11, 883–892 (2009)CrossRefGoogle Scholar
  35. S. Wang, K. Liu, J. Liu, Y.K. Lee, Z.T.F. Yu, E.K. Lee, X. Xu, J. Reiss, L.W.K. Chung, J. Huang, M. Rettig, A. Pantuck, D. Silegson, K.N. Duraiswamy, C.K.F. Shen, H.R. Tseng, Highly efficient capture of circulating tumor cells using nanostructured silicon substrates with integrated chaotic micromixers. Angew. Chem. Int. Ed. 50, 3084–3088 (2011)CrossRefGoogle Scholar
  36. M.E. Warkiani, G. Guan, K.B. Luan, W.C. Lee, A.A.S. Bhagat, P.K. Chaudhuri, D.S.W. Tan, W.T. Lim, S.C. Lee, P.C.Y. Chen, C.T. Lim, J. Han, Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14, 128–137 (2014a)CrossRefGoogle Scholar
  37. M.E. Warkiani, B.L. Khoo, D.S.W. Tan, A.A.S. Bhagat, W.T. Lim, Y.S. Yap, S.C. Lee, R.A. Soo, J. Han, C.T. Lim, An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells. Analyst 139, 3245–3255 (2014b)CrossRefGoogle Scholar
  38. I.Y. Wong, S. Javaid, E.A. Wong, S. Perk, D.A. Haber, M. Toner, D. Irimia, Collective and individual migration following the epithelial–mesenchymal transition. Nat. Mater. 13, 1063–1071 (2014)CrossRefGoogle Scholar
  39. T. Xu, B. Lu, Y.C. Tai, A. Goldkorn, A cancer detection platform which measures telomerase activity from live circulating tumor cells captured on a microfilter. Cancer Res. 70, 6420–6426 (2010)CrossRefGoogle Scholar
  40. M. Yu, S. Stott, M. Toner, S. Maheswaran, D.A. Haber, Circulating tumor cells: Approaches to isolation and characterization. J. Cell Biol. 192, 257–262 (2011)CrossRefGoogle Scholar
  41. S. Zheng, H.K. Lin, B. Lu, A. Williams, R. Datar, R.J. Cote, Y.C. Tai, 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomed. Microdevices 13, 203–213 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Hongmei Chen
    • 1
    Email author
  • Baoshan Cao
    • 2
  • Hongda Chen
    • 1
  • Yu-Sheng Lin
    • 3
  • Jingjing Zhang
    • 4
  1. 1.Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  2. 2.Department of chemotherapy and radiation sicknessPeking University Third HospitalBeijingChina
  3. 3.Division of Nanobionic Research, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhouChina
  4. 4.School of Mechanical EngineeringXi’ an Technological UniversityXi’ an ShaanxiChina

Personalised recommendations