Biomedical Microdevices

, 18:95 | Cite as

Autoinducer-2 analogs and electric fields - an antibiotic-free bacterial biofilm combination treatment

  • Sowmya Subramanian
  • Konstantinos Gerasopoulos
  • Min Guo
  • Herman O. Sintim
  • William E. Bentley
  • Reza Ghodssi
Article

Abstract

Bacterial biofilms are a common cause of chronic medical implant infections. Treatment and eradication of biofilms by conventional antibiotic therapy has major drawbacks including toxicity and side effects associated with high-dosage antibiotics. Additionally, administration of high doses of antibiotics may facilitate the emergence of antibiotic resistant bacteria. Thus, there is an urgent need for the development of treatments that are not based on conventional antibiotic therapies. Presented herein is a novel bacterial biofilm combination treatment independent of traditional antibiotics, by using low electric fields in combination with small molecule inhibitors of bacterial quorum sensing – autoinducer-2 analogs. We investigate the effect of this treatment on mature Escherichia coli biofilms by application of an alternating and offset electric potential in combination with the small molecule inhibitor for 24 h using both macro and micro-scale devices. Crystal violet staining of the macro-scale biofilms shows a 46 % decrease in biomass compared to the untreated control. We demonstrate enhanced treatment efficacy of the combination therapy using a high-throughput polydimethylsiloxane-based microfluidic biofilm analysis platform. This microfluidic flow cell is designed to reduce the growth variance of in vitro biofilms while providing an integrated control, and thus allows for a more reliable comparison and evaluation of new biofilm treatments on a single device. We utilize linear array charge-coupled devices to perform real-time tracking of biomass by monitoring changes in optical density. End-point confocal microscopy measurements of biofilms treated with the autoinducer analog and electric fields in the microfluidic device show a 78 % decrease in average biofilm thickness in comparison to the negative controls and demonstrate good correlation with real-time optical density measurements. Additionally, the combination treatment showed 76 % better treatment efficacy compared to conventional antibiotic therapy. Taken together these results suggest that the antibiotic-free combination treatment described here may provide an effective alternative to traditional antibiotic therapies against bacterial biofilm infections. Use of this combination treatment in the medical and environmental fields would alleviate side effects associated with high-dosage antibiotic therapies, and reduce the rise of antibiotic-resistant bacteria.

Keywords

Autoinducer analogs Quorum sensing Biofilms Bioelectric effect Polydimethylsiloxane Microfluidics Micro-systems 

Supplementary material

10544_2016_120_MOESM1_ESM.docx (1.6 mb)
ESM 1(DOCX 1651 kb)

References

  1. S. Al-Nasiry, N. Geusens, M. Hanssens, C. Luyten, R. Pijnenborg, The use of alamar blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod (Oxford, England) 22(5), 1304–1309 (2007)CrossRefGoogle Scholar
  2. G.G. Anderson and G.A. O’toole. Innate and Induced Resistance Mechanisms of Bacterial Biofilms. Bacterial Biofilms, Springer: 85–105 (2008)Google Scholar
  3. S. A. Blenkinsopp, A. Khoury, J. Costerton, Electrical enhancement of biocide efficacy against pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 58(11), 3770–3773 (1992)Google Scholar
  4. R. Caubet, F. Pedarros-Caubet, M. Chu, E. Freye, M. de Belem Rodrigues, J. Moreau, W. Ellison, A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrob. Agents Chemother. 48(12), 4662–4664 (2004)CrossRefGoogle Scholar
  5. W. Characklis, Bioengineering report: fouling biofilm development: a process analysis. Biotechnol. Bioeng. 23(9), 1923–1960 (1981)CrossRefGoogle Scholar
  6. J. W. Costerton, B. Ellis, K. Lam, F. Johnson, A. E. Khoury, Mechanism of Electrical Enhancement of Efficacy of Antibiotics in Killing Biofilm Bacteria. Antimicrob Agents Chemother 38(12), 2803–2809 (1994)CrossRefGoogle Scholar
  7. J. W. Costerton, P. S. Stewart, E. P. Greenberg, Bacterial biofilms: A common cause of persistent infections. Science 284(5418), 1318–1322 (1999)CrossRefGoogle Scholar
  8. M. P. DeLisa, J. J. Valdes, W. E. Bentley, Mapping stress-induced changes in autoinducer Ai-2 production in Chemostat-cultivated Escherichia coli K-12. J. Bacteriol. 183(9), 2918–2928 (2001)CrossRefGoogle Scholar
  9. C. A. Fux, P. Stoodley, L. Hall-Stoodley, J. W. Costerton, Bacterial biofilms: A diagnostic and therapeutic challenge. Expert Rev Anti-Infect Ther 1(4), 667–683 (2003)CrossRefGoogle Scholar
  10. S. Gamby, V. Roy, M. Guo, J. A. Smith, J. Wang, J. E. Stewart, X. Wang, W. E. Bentley, H. O. Sintim, Altering the communication networks of multispecies microbial systems using a diverse toolbox of Ai-2 analogues. ACS Chem. Biol. 7(6), 1023–1030 (2012)CrossRefGoogle Scholar
  11. M. Ghannoum and G.A. O’Toole. Microbial Biofilms, ASM Press (2004)Google Scholar
  12. M. Giladi, Y. Porat, A. Blatt, E. Shmueli, Y. Wasserman, E. D. Kirson, Y. Palti, Microbial growth inhibition by alternating electric fields in mice with pseudomonas aeruginosa lung infection. Antimicrob. Agents Chemother. 54(8), 3212–3218 (2010)CrossRefGoogle Scholar
  13. A. Heydorn, A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersbøll, S. Molin, Quantification of biofilm structures by the novel computer program Comstat. Microbiology 146(10), 2395–2407 (2000)CrossRefGoogle Scholar
  14. A. Huq, C. A. Whitehouse, C. J. Grim, M. Alam, R. R. Colwell, Biofilms in water, its role and impact in human disease transmission." current opinion in. Biotechnology 19(3), 244–247 (2008)Google Scholar
  15. W. Jun, M. S. Kim, B.-K. Cho, P. D. Millner, K. Chao, D. E. Chan, Microbial biofilm detection on food contact surfaces by macro-scale fluorescence imaging. J. Food Eng. 99(3), 314–322 (2010)CrossRefGoogle Scholar
  16. Y.W. Kim, M.P. Mosteller, M.T. Meyer, H. Ben-Yoav, W.E. Bentley and R. Ghodssi. Microfluidic biofilm observation, analysis, and treatment (Micro-Boat) Platform. Hilton Head Workshop 2012: A solid-state sensors, actuators and microsystems workshop, Hilton Head, SC (2012)Google Scholar
  17. Y. W. Kim, S. Subramanian, K. Gerasopoulos, H. Ben-Yoav, H.-C. Wu, D. Quan, K. Carter, M. T. Meyer, W. E. Bentley, R. Ghodssi, Effect of electrical energy on the efficacy of biofilm treatment using the bioelectric effect. Npj Biofilms Microbiomes 1, 15016 (2015)CrossRefGoogle Scholar
  18. Y. W. Kim, M. P. Mosteller, S. Subramanian, M. T. Meyer, W. E. Bentley, R. Ghodssi, An optical microfluidic platform for spatiotemporal biofilm treatment monitoring. J Micromech Microeng 26(1), 015013 (2016)CrossRefGoogle Scholar
  19. J.H. Merritt, D.E. Kadouri and G.A. O’Toole. Growing and analyzing static biofilms. Current protocols in microbiology, John Wiley & Sons, Inc. (2005)Google Scholar
  20. M. T. Meyer, V. Roy, W. E. Bentley, R. Ghodssi, Development and validation of a microfluidic reactor for biofilm monitoring via optical methods. J Micromech Microeng 21(5), 054023 (2011)CrossRefGoogle Scholar
  21. M. T. Meyer, S. Subramanian, Y. W. Kim, H. Ben-Yoav, M. Gnerlich, W. E. Bentley, R. Ghodssi, Multi-depth Valved microfluidics for biofilm segmentation. J. icromech. Microeng. 25, 095003 (2015)CrossRefGoogle Scholar
  22. M. B. Miller, B. L. Bassler, Quorum sensing in bacteria." annual reviews in. Microbiology 55(1), 165–199 (2001)CrossRefGoogle Scholar
  23. G.A. O’Toole, L.A. Pratt, P.I. Watnick, D.K. Newman, V.B. Weaver and R. Kolter. Genetic approaches to study of biofilms. Methods in Enzymology. J.R. Doyle, Academic Press. 310: 91–109 (1999).Google Scholar
  24. A. Pareilleux, N. Sicard, Lethal effects of electric current on Escherichia coli. Appl Microbiol 19(3), 421–424 (1970)Google Scholar
  25. J. Pozo, R. Patel, The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther 82(2), 204–209 (2007)CrossRefGoogle Scholar
  26. D. N. Quan, W. E. Bentley, Gene network homology in prokaryotes using a similarity search approach: queries of quorum sensing signal transduction. PLoS Comput Biol 8(8), e1002637 (2012)CrossRefGoogle Scholar
  27. T. B. Rasmussen, M. Givskov, Quorum sensing inhibitors: a bargain of effects. Microbiology 152(4), 895–904 (2006a)CrossRefGoogle Scholar
  28. T. B. Rasmussen, M. Givskov, Quorum-sensing inhibitors as anti-pathogenic drugs. International Journal of Medical Microbiology 296(2–3), 149–161 (2006b)CrossRefGoogle Scholar
  29. B. W. Roberts, W. L. Olbricht, The distribution of freely suspended particles at microfluidic bifurcations. AICHE J. 52(1), 199–206 (2006)CrossRefGoogle Scholar
  30. V. Roy, R. Fernandes, C.-Y. Tsao, W. E. Bentley, Cross species quorum quenching using a native Ai-2 processing enzyme. ACS Chem. Biol. 5(2), 223–232 (2009)CrossRefGoogle Scholar
  31. V. Roy, J. A. Smith, J. Wang, J. E. Stewart, W. E. Bentley, H. O. Sintim, Synthetic analogs tailor native Ai-2 signaling across bacterial species. J. Am. Chem. Soc. 132(32), 11141–11150 (2010)CrossRefGoogle Scholar
  32. V. Roy, B. L. Adams, W. E. Bentley, Developing next generation antimicrobials by intercepting ai-2 mediated quorum sensing. Enzym Microb Technol 49(2), 113–123 (2011)CrossRefGoogle Scholar
  33. V. Roy, M. T. Meyer, J. A. I. Smith, S. Gamby, H. O. Sintim, R. Ghodssi, W. E. Bentley, Ai-2 analogs and antibiotics: a synergistic approach to reduce bacterial biofilms. Appl. Microbiol. Biotechnol. 97(6), 2627–2638 (2013)CrossRefGoogle Scholar
  34. P. S. Stewart, W. Wattanakaroon, L. Goodrum, S. M. Fortun, B. R. McLeod, Electrolytic generation of oxygen partially explains electrical enhancement of tobramycin efficacy against pseudomonas aeruginosa biofilm. Antimicrob. Agents Chemother. 43(2), 292–296 (1999)Google Scholar
  35. P. Stoodley, D. DeBeer, H. M. Lappin-Scott, Influence of electric fields and Ph on biofilm structure as related to the bioelectric effect. Antimicrob. Agents Chemother. 41(9), 1876–1879 (1997)Google Scholar
  36. P. Stoodley, K. Sauer, D. Davies, J. W. Costerton, Biofilms as complex differentiated communities. annual reviews in. Microbiology 56(1), 187–209 (2002)CrossRefGoogle Scholar
  37. S. Subramanian, Y.W. Kim, M.T. Meyer, H.O. Sintim, W.E. Bentley and R. Ghodssi. A real-time bacterial biofilm characterization platform using a microfluidic system. Hilton Head Workshop 2014: A solid-state sensors, actuators and microsystems workshop, Hilton Head, SC (2014)Google Scholar
  38. S. Subramanian, K. Gerasopoulos, H.O. Sintim, W.E. Bentley and R. Ghodssi. A bacterial biofilm combination treatment using a real-time microfluidic platform. The 18th international conference on solid-state sensors, actuators and microsystems (Transducers), Anchorage, AK (2015)Google Scholar
  39. K. Toté, D. V. Berghe, L. Maes, P. Cos, A new colorimetric microtitre model for the detection of Staphylococcus aureus biofilms. Lett. Appl. Microbiol. 46(2), 249–254 (2008)CrossRefGoogle Scholar
  40. L. Wang, J. Li, J. C. March, J. J. Valdes, W. E. Bentley, Luxs-dependent Gene regulation in Escherichia coli K-12 revealed by genomic expression profiling. J. Bacteriol. 187(24), 8350–8360 (2005)CrossRefGoogle Scholar
  41. C. M. Waters, B. L. Bassler, Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005)CrossRefGoogle Scholar
  42. N. Wellman, S. M. Fortun, B. R. McLeod, Bacterial biofilms and the bioelectric effect. Antimicrob. Agents Chemother. 40(9), 2012–2014 (1996)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sowmya Subramanian
    • 1
    • 2
  • Konstantinos Gerasopoulos
    • 1
  • Min Guo
    • 3
  • Herman O. Sintim
    • 3
  • William E. Bentley
    • 4
    • 5
  • Reza Ghodssi
    • 1
    • 2
    • 4
  1. 1.MEMS Sensors and Actuators Laboratory, Institute for Systems ResearchUniversity of MarylandCollege ParkUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkUSA
  3. 3.Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkUSA
  4. 4.Fischell Department of BioengineeringUniversity of MarylandCollege ParkUSA
  5. 5.Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations