Biomedical Microdevices

, 18:87 | Cite as

Parylene MEMS patency sensor for assessment of hydrocephalus shunt obstruction

  • Brian J. Kim
  • Willa Jin
  • Alexander Baldwin
  • Lawrence Yu
  • Eisha Christian
  • Mark D. Krieger
  • J. Gordon McComb
  • Ellis Meng
Article

Abstract

Neurosurgical ventricular shunts inserted to treat hydrocephalus experience a cumulative failure rate of 80 % over 12 years; obstruction is responsible for most failures with a majority occurring at the proximal catheter. Current diagnosis of shunt malfunction is imprecise and involves neuroimaging studies and shunt tapping, an invasive measurement of intracranial pressure and shunt patency. These patients often present emergently and a delay in care has dire consequences. A microelectromechanical systems (MEMS) patency sensor was developed to enable direct and quantitative tracking of shunt patency in order to detect proximal shunt occlusion prior to the development of clinical symptoms thereby avoiding delays in treatment. The sensor was fabricated on a flexible polymer substrate to eventually allow integration into a shunt. In this study, the sensor was packaged for use with external ventricular drainage systems for clinical validation. Insights into the transduction mechanism of the sensor were obtained. The impact of electrode size, clinically relevant temperatures and flows, and hydrogen peroxide (H2O2) plasma sterilization on sensor function were evaluated. Sensor performance in the presence of static and dynamic obstruction was demonstrated using 3 different models of obstruction. Electrode size was found to have a minimal effect on sensor performance and increased temperature and flow resulted in a slight decrease in the baseline impedance due to an increase in ionic mobility. However, sensor response did not vary within clinically relevant temperature and flow ranges. H2O2 plasma sterilization also had no effect on sensor performance. This low power and simple format sensor was developed with the intention of future integration into shunts for wireless monitoring of shunt state and more importantly, a more accurate and timely diagnosis of shunt failure.

Keywords

Patency Sensor Parylene C Hydrocephalus Obstruction 

References

  1. H. E. Ayliffe, R. D. Rabbitt, Measurement Science and Technology 14(8), 1321 (2003)CrossRefGoogle Scholar
  2. J. S. Baru, D. A. Bloom, K. Muraszko, C. E. Koop, J Am Coll Surgeons 192(1), 79–85 (2001)CrossRefGoogle Scholar
  3. S. Basati, K. Tangen, Y. Hsu, H. Lin, D. Frim, A. Linninger. doi: 10.1109/TBME.2014.2335171 (2014)
  4. C. Blegvad, A. Skjolding, H. Broholm, H. Laursen, M. Juhler, Acta Neurochir 155(9), 1763–1772 (2013)CrossRefGoogle Scholar
  5. T. Bork, A. Hogg, M. Lempen, D. Müller, D. Joss, T. Bardyn, P. Büchler, H. Keppner, S. Braun, Y. Tardy, Biomed Microdevices 12(4), 607–618 (2010)CrossRefGoogle Scholar
  6. S. R. Browd, B. T. Ragel, O. N. Gottfried, J. R. W. Kestle, Pediatric Neurology 34(2), 83–92 (2006)CrossRefGoogle Scholar
  7. H. L. Brydon, G. Keir, E. J. Thompson, R. Bayston, R. Hayward, W. Harkness, Journal of Neurology, Neurosurgery & Psychiatry 64(5), 643–647 (1998)CrossRefGoogle Scholar
  8. W. H. Coulter, In: Proc Natl Electron Conf, 1034–1040 (1956)Google Scholar
  9. R. D. Dickerman, W. J. McConathy, J. Morgan, Q. E. Stevens, J. T. Jolley, S. Schneider, M. A. Mittler, J Clin Neurosci 12(7), 781–783 (2005)CrossRefGoogle Scholar
  10. J. M. Drake, J. R. Kestle, R. Milner, G. Cinalli, F. Boop, J. Piatt Jr., S. Haines, S. J. Schiff, D. D. Cochrane, P. Steinbok, Neurosurgery 43(2), 294–303 (1998)CrossRefGoogle Scholar
  11. J. Drake, J. Kestle, S. Tuli, Child's Nervous System 16(10–11), 800–804 (2000)CrossRefGoogle Scholar
  12. C.A. Gutierrez, E. Meng. J Microelectromech S 20 5, 1098–1108 (2011)Google Scholar
  13. C.A. Gutierrez, C. Lee, B. Kim, E. Meng. In: Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 16th International, 5–9 June 2011 2011. pp 2299–2302 (2011)Google Scholar
  14. E. J. Haberl, M. Messing-Juenger, M. Schuhmann, R. Eymann, C. Cedzich, M. J. Fritsch, M. Kiefer, E. J. Van Lindert, C. Geyer, M. Lehner, Journal of Neurosurgery: Pediatrics 4(3), 288–293 (2009)Google Scholar
  15. C. A. Harris, J. P. McAllister II, Child's Nervous System 27(8), 1221–1232 (2011)CrossRefGoogle Scholar
  16. C. A. Harris, J. P. McAllister, Neurosurgery 70(6), 1589–1602 (2012)CrossRefGoogle Scholar
  17. C. A. Harris, J. H. Resau, E. A. Hudson, R. A. West, C. Moon, J. P. McAllister, Exp Neurol 222(6), 204–210 (2010)CrossRefGoogle Scholar
  18. C. A. Harris, J. H. Resau, E. A. Hudson, R. A. West, C. Moon, A. D. Black, J. P. McAllister, J Biomed Mater Res Part A 97(4), 433–440 (2011)CrossRefGoogle Scholar
  19. B. A. Kaufman, T. Park, Pediatric Neurosurgery 31(1), 1–6 (1999)CrossRefGoogle Scholar
  20. J. Kestle, J. Drake, R. Milner, C. Sainte-Rose, G. Cinalli, F. Boop, J. Piatt, S. Haines, S. Schiff, D. Cochrane, P. Steinbok, N. MacNeil, Pediatric Neurosurgery 33(5), 230–236 (2000)CrossRefGoogle Scholar
  21. B.J. Kim, C.A. Gutierrez, G.A. Gerhardt, E. Meng. In: Micro Electro Mechanical Systems (MEMS), 2012 I.E. 25th International Conference on, Jan. 29 2012-Feb. 2 2012 pp 124–127 (2012)Google Scholar
  22. A. V. Kulkarni, J. M. Drake, M. Lamberti-Pasculli, J Neurosurg 94(2), 195–201 (2001)CrossRefGoogle Scholar
  23. J. Lin, M. Morris, W. Olivero, F. Boop, R. A. Sanford, J Neurosurg 99(2), 426–431 (2003)CrossRefGoogle Scholar
  24. F. Lundberg, D.-Q. Li, D. Falkenback, T. Lea, P. Siesjö, S. Söderström, B. J. Kudryk, J. O. Tegenfeldt, S. Nomura, Å. Ljungh, J Neurosurg 90(1), 101–108 (1999)CrossRefGoogle Scholar
  25. B. R. Lutz, P. Venkataraman, S. R. Browd, Surgical Neurology International 4(Suppl 1), S38 (2013)Google Scholar
  26. E. Meng, P. Y. Li, Y. C. Tai, J. Micromech. Microeng. 18, 4 (2008)CrossRefGoogle Scholar
  27. E. Meng, X. Zhang, W. Benard, in R Ghodssi, ed by P. Li. Additive processes for polymeric materials (Springer, Mems Materials and Processes Handbook, 2011), pp. 193–271Google Scholar
  28. Y. Nam, MRS bulletin 37(06), 566–572 (2012)CrossRefGoogle Scholar
  29. I. K. Pople, Journal of neurology. Neurosurgery & Psychiatry 73(suppl 1), i17–i22 (2002)Google Scholar
  30. R. Sheybani, N.E. Cabrera-Munoz, T. Sanchez, E. Meng. In: Engineering in Medicine and Biology Society (EMBC), Annual International Conference of the IEEE, Aug. 28 2012-Sept. 1 2012 2012. pp 519–522 (2012)Google Scholar
  31. U. W. Thomale, H. Hosch, A. Koch, M. Schulz, G. Stoltenburg, E.-J. Haberl, C. Sprung, Child's Nervous System 26(6), 781–789 (2010)CrossRefGoogle Scholar
  32. S. Tuli, B. O’Hayon, J. Drake, M. Clarke, J. Kestle, Neurosurgery 45(6), 1329 (1999)CrossRefGoogle Scholar
  33. J. M. Wong, J. E. Ziewacz, A. L. Ho, J. R. Panchmatia, A. M. Bader, H. J. Garton, E. R. Laws, A. A. Gawande, Neurosurgical Focus 33(5), E13 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Brian J. Kim
    • 1
  • Willa Jin
    • 1
  • Alexander Baldwin
    • 1
  • Lawrence Yu
    • 1
  • Eisha Christian
    • 2
  • Mark D. Krieger
    • 2
    • 3
  • J. Gordon McComb
    • 2
    • 3
  • Ellis Meng
    • 1
    • 4
  1. 1.Department of Biomedical Engineering, Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Division of NeurosurgeryChildren’s Hospital Los AngelesLos AngelesUSA
  4. 4.Ming Hsieh Department of Electrical Engineering, Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations