Biomedical Microdevices

, 18:63 | Cite as

A simple microfluidic device to study cell-scale endothelial mechanotransduction

  • Julie Lafaurie-Janvore
  • Elizabeth E. Antoine
  • Sidney J. Perkins
  • Avin Babataheri
  • Abdul I. Barakat


Atherosclerosis is triggered by chronic inflammation of arterial endothelial cells (ECs). Because atherosclerosis develops preferentially in regions where blood flow is disturbed and where ECs have a cuboidal morphology, the interplay between EC shape and mechanotransduction events is of primary interest. In this work we present a simple microfluidic device to study relationships between cell shape and EC response to fluid shear stress. Adhesive micropatterns are used to non-invasively control EC elongation and orientation at both the monolayer and single cell levels. The micropatterned substrate is coupled to a microfluidic chamber that allows precise control of the flow field, high-resolution live-cell imaging during flow experiments, and in situ immunostaining. Using micro particle image velocimetry, we show that cells within the chamber alter the local flow field so that the shear stress on the cell surface is significantly higher than the wall shear stress in regions containing no cells. In response to flow, we observe the formation of lamellipodia in the downstream portion of the EC and cell retraction in the upstream portion. We quantify flow-induced calcium mobilization at the single cell level for cells cultured on unpatterned surfaces or on adhesive lines oriented either parallel or orthogonal to the flow. Finally, we demonstrate flow-induced intracellular calcium waves and show that the direction of propagation of these waves is determined by cell polarization rather than by the flow direction. The combined versatility and simplicity of this microfluidic device renders it very useful for studying relationships between EC shape and mechanosensitivity.


Atherosclerosis Mechanobiology Shear stress Calcium signaling Micropatterns Microfluidic flow chamber 



The authors thank Bertrand Levaché for introducing them to the double-sided tape microfabrication technique and Maria Isabella Gariboldi for her participation in micropatterning technique development. This work was supported in part by an endowment in cardiovascular cellular engineering from the AXA Research Fund. Julie Lafaurie-Janvore was funded by postdoctoral fellowships from the Fondation Lefoulon-Delalande and the AXA Research Fund. Elizabeth Antoine was funded by a Whitaker International Program postdoctoral fellowship. Sidney J. Perkins was supported by a summer research international student fellowship from École polytechnique and the Columbia University European Institute’s Fellowship Program.

Supplementary material

10544_2016_90_MOESM1_ESM.pdf (355 kb)
ESM 1 (PDF 355 kb)
10544_2016_90_MOESM2_ESM.avi (21 mb)
ESM 2 (AVI 21475 kb)
10544_2016_90_MOESM3_ESM.avi (18.6 mb)
ESM 3 (AVI 19085 kb)
10544_2016_90_MOESM4_ESM.avi (283 kb)
ESM 4 (AVI 283 kb)


  1. F. An, Q. Yueyang, X. Liu, R. Zhong, Y. Luo, Organ-on-a-Chip: new platform for biological analysis. Anal. Chem. Insights. 10, 39–45 (2015)Google Scholar
  2. D. E. J. Anderson, M. T. Hinds, Endothelial cell micropatterning: methods, effects, and applications. Ann. Biomed. Eng. 39(9), 2329–2345 (2011)CrossRefGoogle Scholar
  3. J. Ando, K. Yamamoto, Flow detection and calcium Signalling in vascular endothelial cells. Cardiovasc. Res. 99(2), 260–268 (2013)CrossRefGoogle Scholar
  4. A. Azioune, M. Storch, M. Bornens, M. Théry, M. Piel, Simple and rapid process for single cell micro-patterning. Lab Chip 9(11), 1640–1642 (2009)CrossRefGoogle Scholar
  5. A. Azioune, N. Carpi, Q. Tseng, M. Théry, M. Piel, Protein micropatterns: a direct printing protocol using deep UVs. Methods Cell Biol. 97, 133–146 (2010)CrossRefGoogle Scholar
  6. A. I. Barakat, Blood flow and arterial endothelial dysfunction: mechanisms and implications. C. R. Physique 14, 479–496 (2013)CrossRefGoogle Scholar
  7. K. A. Barbee, T. Mundel, R. Lal, P. F. Davies, Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am. J. Physiol. Heart Circ. Physiol. 268, H1765–H1772 (1995)Google Scholar
  8. D. J. Beebe, D. E. Ingber, J. Den Toonder, Organs on chips 2013. Lab. Chip. 13, 3447–3448 (2013)CrossRefGoogle Scholar
  9. J. M. Chan, K. H. K. Wong, A. M. Richards, C. L. Drum, Microengineering in cardiovascular research: new developments and translational applications. Cardiovasc. Res. 106, 9–18 (2015)CrossRefGoogle Scholar
  10. Y. S. Chatzizisis, A. U. Coskun, M. Jonas, E. R. Edelman, C. L. Feldman, P. H. Stone, Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49(25), 2379–2393 (2007)CrossRefGoogle Scholar
  11. C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, D. E. Ingber, Geometric control of cell life and death. Science. 276(5317), 1425–1428 (1997)CrossRefGoogle Scholar
  12. S. Chien, Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292, 1209–1224 (2007)CrossRefGoogle Scholar
  13. P. F. Davies, Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75(3), 519–560 (1995)Google Scholar
  14. N. DePaola, P. F. Davies, W. F. Pritchard, L. Florez, N. Harbeck, D. C. Polacek, Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc. Natl. Acad. Sci. 96, 3154–3159 (1999)CrossRefGoogle Scholar
  15. A. Eckstein, P. P. Vlachos, Assessment of advanced windowing techniques for digital particle image velocimetry (DPIV). Meas. Sci. Technol. 20, 075402 (2009a)CrossRefGoogle Scholar
  16. A. Eckstein, P. P. Vlachos, Digital particle image velocimetry (DPIV) robust phase correlation. Meas. Sci. Technol. 20, 055401 (2009b)CrossRefGoogle Scholar
  17. A. Edelstein, N. Amodaj, K. Hoover, R. Vale, N. Stuurman, Computer control of microscopes using μManager. Curr. Protoc. Mol. Biol. Chapter 14, 14.20.1–14.20.17 (2010)Google Scholar
  18. J. Fink, M. Théry, A. Azioune, R. Dupont, F. Chatelain, M. Bornens, M. Piel, Comparative study and improvement of current cell micro-patterning techniques. Lab. Chip. 7(6), 672–680 (2007)CrossRefGoogle Scholar
  19. E. Fröhlich, G. Bonstingl, A. Höfler, C. Meindl, G. Leitinger, T. R. Pieber, E. Roblegg, Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols. Toxicol. in Vitro. 27(1), 409–417 (2013)Google Scholar
  20. C. L. M. Gouget, Y. Hwang, A. I. Barakat, Model of cellular mechanotransduction via actin stress fibers. Biomech. Model. Mechanobiol Springer Berlin Heidelberg 15, 331–344 (2015)CrossRefGoogle Scholar
  21. C. Hahn, M. A. Schwartz, Mechanotransduction in vascular physiology and Atherogenesis. Nat. Rev. Mol. Cell Biol. 10(1), 53–62 (2009)CrossRefGoogle Scholar
  22. S. Hsu, R. Thakar, D. Liepmann, S. Li, Effects of shear stress on endothelial cell Haptotaxis on micropatterned surfaces. Biochem. Biophys. Res. Commun. 337(1), 401–409 (2005)CrossRefGoogle Scholar
  23. R. H. W. Lam, Y. Sun, W. Chen, F. Jianping, Elastomeric Microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis. Lab. Chip. 12(10), 1865–1873 (2014)CrossRefGoogle Scholar
  24. M. J. Levesque, R. M. Nerem, The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107(4), 341–347 (1985)CrossRefGoogle Scholar
  25. Y.-S. J. Li, J. H. Haga, S. Chien, Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38(10), 1949–1971 (2005)CrossRefGoogle Scholar
  26. X. Lin, B. P. Helmke, Cell structure controls endothelial cell migration under fluid shear stress. Cell. Mol. Bioeng. 2(2), 231–243 (2012)CrossRefGoogle Scholar
  27. R. Lindken, M. Rossi, S. Grosse, J. Westerweel, Micro-particle image velocimetry (microPIV): recent developments, applications, and guidelines. Lab. Chip. 9(17), 2551–2567 (2009)CrossRefGoogle Scholar
  28. C. D. Meinhart, S. T. Wereley, J. G. Santiago, PIV measurements of a microchannel flow. Exp. Fluids 27, 414–419 (1999)CrossRefGoogle Scholar
  29. U. R. Michaelis, Mechanisms of endothelial cell migration. Cell. Mol. Life Sci. 71(21), 4131–4148 (2014)CrossRefGoogle Scholar
  30. J. T. Morgan, J. A. Wood, N. M. Shah, M. L. Hughbanks, P. Russell, A. I. Barakat, C. J. Murphy, Integration of Basal Topographic Cues and Apical Shear Stress in Vascular Endothelial Cells. Biomaterials. 33(16) Elsevier Ltd, 4126–4135 (2012)CrossRefGoogle Scholar
  31. R. G. Parton, M. A. del Pozo, Caveolae as Plasma Membrane Sensors, Protectors and Organizers. Nat. Rev. Mol. Cell. Biol. 14(2) Nature Publishing Group, 98–112 (2013)Google Scholar
  32. W. J. Polacheck, R. Li, S. G. M. Uzel, R. D. Kamm, Microfluidic platforms for mechanobiology. Lab. Chip. 13(12), 2252–2267 (2013)Google Scholar
  33. T. Richter, M. Floetenmeyer, C. Ferguson, J. Galea, J. Goh, M. R. Lindsay, G. P. Morgan, B. J. Marsh, R. G. Parton, High-resolution 3D quantitative analysis of caveolar ultrastructure and Caveola – cytoskeleton interactions. Traffic. 9(29), 893–909 (2008)CrossRefGoogle Scholar
  34. R. L. Satcher, S. R. Bussolari, M. A. Gimbrone, C. F. Dewey, The distribution of fluid forces on model arterial endothelium using computational fluid dynamics. J. Biomech. Eng. 114, 309–316 (1992)CrossRefGoogle Scholar
  35. C. A. Schneider, W. S. Rasband, K. W. Eliceiri, NIH image to ImageJ: 25 Years of image analysis. Nat. Methods. 9, 671–675 (2012)CrossRefGoogle Scholar
  36. J. Shemesh, I. Jalilian, A. Shi, G. H. Yeoh, T. M. L. Knothe, M. E. Warkiani, Flow-induced stress on adherent cells in microfluidic devices. Lab .Chip. Royal Society of Chemistry (2015). doi: 10.1039/C5LC00633C
  37. M. Théry, Micropatterning as a tool to decipher cell morphogenesis and functions. J. Cell Sci. 123(Pt 24), 4201–4213 (2010)CrossRefGoogle Scholar
  38. M. Théry, V. Racine, M. Piel, A. Pépin, A. Dimitrov, Y. Chen, J.-B. Sibarita, M. Bornens, Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl. Acad. Sci. 103(52), 19771–19776 (2006)CrossRefGoogle Scholar
  39. L. Wang, Z.-L. Zhang, J. Wdzieczak-Bakala, D.-W. Pang, J. Liu, Y. Chen, Patterning cells and shear flow conditions: convenient observation of endothelial cell Remoulding, enhanced production of angiogenesis factors and drug response. Lab. Chip. 11(24), 4235–4240 (2011)CrossRefGoogle Scholar
  40. K. Yamamoto, K. Furuya, M. Nakamura, E. Kobatake, M. Sokabe, J. Ando, Visualization of flow-induced ATP release and triggering of Ca2+ waves at caveolae in vascular endothelial cells. J. Cell Sci. 124(Pt 20), 3477–3483 (2011)CrossRefGoogle Scholar
  41. E. W. K. Young, C. A. Simmons, Macro- and microscale fluid flow Systems for Endothelial Cell Biology. Lab. Chip. 10(2), 143–160 (2010)CrossRefGoogle Scholar
  42. A. Yurdagul, A. C. Finney, M. D. Woolard, A. W. Orr, The arterial microenvironment: the where and why of atherosclerosis. Biochem. J. 473, 1281–1295 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Julie Lafaurie-Janvore
    • 1
  • Elizabeth E. Antoine
    • 1
  • Sidney J. Perkins
    • 1
    • 2
  • Avin Babataheri
    • 1
  • Abdul I. Barakat
    • 1
  1. 1.Laboratoire d’Hydrodynamique de l’École polytechniqueCNRS-EP UMR 7646PalaiseauFrance
  2. 2.Columbia UniversityNew YorkUSA

Personalised recommendations