Advertisement

Biomedical Microdevices

, 18:39 | Cite as

Characterization of steady streaming for a particle manipulation system

  • Roni Amit
  • Avi Abadi
  • Gabor KosaEmail author
Article

Abstract

Accurate positioning of biological cells or microscopic particle without directly contacting them is a challenging task in biomedical engineering. Various trapping methods for controlling the position of a particle have been suggested. The common driving methods are based on laser and ultrasonic actuation principles. In this work we suggest a design for a hydrodynamic particle manoeuvring system. The system operates using steady streaming in a viscous fluid media induced by high frequency vibration of piezoelectric cantilevers. A particle within the workspace of the system can be trapped and manipulated to a desired position by the fairly unidirectional flow field created by the beams. In this paper, the flow field in the particle manipulation system is characterized numerically and experimentally. We find that the flow field resembles the analytical solutions of a flow field created by an oscillating sphere. Furthermore, we validate numerically the quadratic relation between the steady streaming velocity and the vibration amplitude of the beam. The calibration of the piezoelectric actuator’s oscillation amplitudes enables effective positioning of particles with a diameter of 20 um to 1 mm. We find that a 30X0.8X2 m m 3 piezoelectric beam vibrating at its first resonance frequency, 200 Hz, is able to move a particle at a typical flow velocity ranging between 0.05 mm/sec and 0.13 mm/s in 430 cSt Si oil (Re=0.2).

Keywords

Microfluidic trapping Micro manipulation Steady streaming Piezoelectric actuation 

Supplementary material

(WMV 8.17 MB)

(WMV 7.73 MB)

(AVI 18.3 MB )

10544_2016_55_MOESM4_ESM.wmv (4.1 mb)
(WMV 4.11 MB)

References

  1. A. Abadi, G. Kosa, Piezoelectric beam for intrabody propulsion controlled by embedded sensing. In print in Mechatronics, IEEE/ASME Transactions (2016)Google Scholar
  2. A. Ainla, G.D.M. Jeffries, R. Brune, O. Orwar, A. Jesorka, A multifunctional pipette. Lab. Chip. 12(7), 1255–1261 (2012)CrossRefGoogle Scholar
  3. M.A. Barber, A new method of isolating micro-organisms. J. Kansas Med. Sot. 4, 489–494 (1904)Google Scholar
  4. R.W. Bowman, G. M. Gibson, A. Linnenberger, D.B. Phillips, J.A. Grieve, D.M. Carberry, S. Serati, M.J. Miles, M. J. Padgett, Red tweezers: Fast, customisable hologram generation for optical tweezers. Comput. Phys. Commun. 185(1), 268–273 (2014)CrossRefGoogle Scholar
  5. J. Castillo, M. Dimaki, W. E. Svendsen, Manipulation of biological samples using micro and nano techniques. Integr. Biol. 1(1), 30–42 (2009)CrossRefGoogle Scholar
  6. K. Chong, S.D. Kelly, S. Smith, J.D. Eldredge, Inertial particle trapping in viscous streaming. Phys. Fluids. 25(3), 003622 (2013)CrossRefGoogle Scholar
  7. J. P. Desai, A. Pillarisetti, A.D. Brooks, Engineering approaches to biomanipulation. Annu. Rev. Biomed. Eng. 9, 35–53 (2007)CrossRefGoogle Scholar
  8. E. Diller, J. Giltinan, G.Z. Lum, Z. Ye, S. Metin, Six-degree-of-freedom magnetic actuation for wireless microrobotics The International Journal of Robotics Research page 0278364915583539 (2015)Google Scholar
  9. T. Fukuda, F. Arai, M. Nakajima, Micro-nanorobotic manipulation systems and their applications Springer Science & Business Media (2013)Google Scholar
  10. C. Gosse, V. Croquette, Magnetic tweezers: micrOmanipulation and force measurement at the molecular level. Biom. J. 82(6), 3314–3329 (2002)Google Scholar
  11. D.G. Grier, Y. Roichman, Holographic optical trapping. Appl. Opt. 45(5), 880–887 (2006)CrossRefGoogle Scholar
  12. B. Hammarström, M. Evander, H. Barbeau, M. Bruzelius, J. Larsson, T. Laurell, J. Nilsson, Non-contact acoustic cell trapping in disposable glass capillaries. Lab Chip. 10(17), 2251–2257 (2010)CrossRefGoogle Scholar
  13. T. Hayakawa, S. Sakuma, F. Arai, On-chip 3d rotation of oocyte based on a vibration-induced local whirling flow. Microsystems & Nanoengineering, volume 1 (2015)Google Scholar
  14. J. Holtsmark, I. Johnsen, S. To, S. Skavlem, Boundary layer flow near a cylindrical obstacle in an oscillating, incompressible fluid. J. Acoust. Soc. Am. 26(1), 26–39 (1954)MathSciNetCrossRefGoogle Scholar
  15. T.A. House, V.H. Lieu, D.T. Schwartz, A model for inertial particle trapping locations in hydrodynamic tweezers arrays. J. Micromech. Microeng. 24(4), 045–019 (2014)CrossRefGoogle Scholar
  16. J.S. Jeong, J.W. Lee, C.Y. Lee, S.Y. Teh, A. Lee, K. Kirk Shung, Particle manipulation in a microfluidic channel using acoustic trap. Biomed. Microdevices. 13(4), 779–788 (2011)CrossRefGoogle Scholar
  17. L. Johansson, Acoustic manipulation of particles and fluids in microfluidic systems (2009)Google Scholar
  18. A. Karimi, S. Yazdi, A.M. Ardekani, Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics. 7(2), 021–501 (2013)CrossRefGoogle Scholar
  19. I.S.M. Khalil, V. Magdanz, S. Sanchez, O.G. Schmidt, S. Misra, E. Ben-Jacob, Wireless magnetic-based closed-loop control of self-propelled microjets. PloS one. 9(2), e83053 (2014)CrossRefGoogle Scholar
  20. I.S.M. Khalil, M.P. Pichel, L. Abelmann, S. Misra, Closed-loop control of magnetotactic bacteria. Int. J. Robot. Res. 32(6), 637–649 (2013)CrossRefGoogle Scholar
  21. K. Khoshmanesh, S. Nahavandi, S. Baratchi, A. Mitchell, K. Kalantar-zadeh, Dielectrophoretic platforms for bio-microfluidic systems. Biosensors and Bioelectronics. 26(5), 1800–1814 (2011)CrossRefGoogle Scholar
  22. S. Kim, F. Shafiei, D. Ratchford, X. Li, Controlled afm manipulation of small nanoparticles and assembly of hybrid nanostructures. Nanotechnology. 22(11), 115–301 (2011)CrossRefGoogle Scholar
  23. V. Korzh, U. Strähle, Marshall barber and the century of microinjection: from cloning of bacteria to cloning of everything. Differentiation. 70(6), 221–226 (2002)CrossRefGoogle Scholar
  24. G. Kósa, M. Shoham, Z. Menashe, Propulsion method for swimming microrobots. IEEE Trans. Robot. 23(1), 137–150 (2007)CrossRefGoogle Scholar
  25. J.-S. Kwon, S.T. Wereley, Towards new methodologies for manipulation of colloidal particles in a miniaturized fluidic device: optoelectrokinetic manipulation technique. J. Fluids Eng. 135(2), 021–306 (2013)CrossRefGoogle Scholar
  26. J. Lee, S.-Y. Teh, A. Lee, H.H. Kim, C. Lee, K.K. Shung, Single beam acoustic trapping. Appl. Phys. Lett. 95(7), 073–701 (2009)Google Scholar
  27. J. Lighthill, Acoustic streaming. J. Sound Vib. 61(3), 391–418 (1978)CrossRefzbMATHGoogle Scholar
  28. B.R. Lutz, J. Chen, D.T. Schwartz, Hydrodynamic tweezers: 1. noncontact trapping of single cells using steady streaming microeddies. Anal. Chem. 78(15), 5429–5435 (2006)CrossRefGoogle Scholar
  29. V. Marx, Biophysics: using sound to move cells. Nat. Methods. 12(1), 41–44 (2015)CrossRefGoogle Scholar
  30. L. Meirovitch, R.G. Parker, Fundamentals of vibrations. Appl. Mech. Rev. 54, 100 (2001)CrossRefGoogle Scholar
  31. K.C. Neuman, A. Nagy, Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. methods. 5(6), 491–505 (2008)CrossRefGoogle Scholar
  32. P. Neuži, S. Giselbrecht, K. Länge, T.J. Huang, A. Manz, Revisiting lab-on-a-chip technology for drug discovery. Nat. Rev. Drug Discov. 11(8), 620–632 (2012)CrossRefGoogle Scholar
  33. S. Oberti, D. Moeller, A. Neild, J. Dual, F. Beyeler, B.J. Nelson, S. Gutmann, Strategies for single particle manipulation using acoustic and flow fields. Ultrasonics. 50(2), 247–257 (2010)CrossRefGoogle Scholar
  34. C. Qian, H. Huang, L. Chen, X. Li, Z. Ge, T. Chen, Z. Yang, L. Sun, Dielectrophoresis for bioparticle manipulation. Int. J. Mol. Sci. 15(10), 18281–18309 (2014)CrossRefGoogle Scholar
  35. N. Riley, Oscillating viscous flows. Mathematika. 12(02), 161–175 (1965)MathSciNetCrossRefGoogle Scholar
  36. N. Riley, Steady streaming. Annu. Rev. Fluid Mech. 33(1), 43–65 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  37. P. Sajeesh, A. Kumar Sen, Particle separation and sorting in microfluidic devices: a review. Microfluidics and nanofluidics. 17(1), 1–52 (2014)CrossRefGoogle Scholar
  38. H. Schlichting, B. ebener, Berechnung ebener periodischer grenzschichtströmungen. Phys. Z. 33(1932), 327–335 (1932)zbMATHGoogle Scholar
  39. E.B. Steager, M.S. Sakar, C. Magee, M. Kennedy, A. Cowley, V Kumar, Automated biOmanipulation of single cells using magnetic microrobots. Int. J. Rob. Res. 32(3), 346–359 (2013)CrossRefGoogle Scholar
  40. J.T. Stuart, Unsteady boundary layers(unsteady boundary layer flow, considering stokes, rayleigh and heisenberg-tollmien theories application to oscillatory, fluctuating, impulsive and rotational effects). Recent research on unsteady boundary layers (1972)Google Scholar
  41. E.B. Tadmor, G. Kósa, Electromechanical coupling correction for piezoelectric layered beams. J. Microelectron. Syst. 12(6), 899–906 (2003)CrossRefGoogle Scholar
  42. M. Tanyeri, C.M. Schroeder, Manipulation and confinement of single particles using fluid flow. Nano Lett. 13(6), 2357–2364 (2013)CrossRefGoogle Scholar
  43. Y. Temiz, R.D. Lovchik, G.V. Kaigala, E. Delamarche, Lab-on-a-chip devices how to close and plug the lab? Microelectron. Eng. 132, 156–175 (2015)CrossRefGoogle Scholar
  44. W. Thielicke, E. J. Stamhuis. Pivlabtime-resolved digital particle image velocimetry tool for matlab (version. 1, 35 (2014) http://pivlab.blogspot.co.il/
  45. W. Thielicke, E. J. Stamhuis, Pivlab–towards user-friendly, affordable and accurate digital particle image velocimetry in matlab. Journal of Open Research Software. 2(1), e30 (2014)Google Scholar
  46. M. Van Dyke, An album of fluid motion (1982)Google Scholar
  47. C.-Y. Wang, On high-frequency oscillatory viscous flows. J. Fluid Mech. 32(01), 55–68 (1968)CrossRefzbMATHGoogle Scholar
  48. J. Wang, W. Gao, Nano/microscale motors: biomedical opportunities and challenges. ACS nano. 6(7), 5745–5751 (2012)CrossRefGoogle Scholar
  49. X. Tiantian, Y. Jiangfan, X. Yan, H. Choi, L. Zhang, Magnetic actuation based motion control for microrobots An overview. Micromachines. 6(9), 1346–1364 (2015)CrossRefGoogle Scholar
  50. Y. Yalikun, A. Toshifumi, Y. Kanda, K. Morishima, in Non-contact 3d rotation and capture method for bio-object based on microfluidic stream. in Micro-NanoMechatronics and Human Science (MHS), 2014 International Symposium on, pages 1–4. IEEE, (2014)Google Scholar
  51. Z. Ye, C. Edington, A.J. Russell, M. Sitti, in Versatile non-contact micro-manipulation method using rotational flows locally induced by magnetic microrobots. in Advanced Intelligent Mechatronics (AIM), 2014 IEEE/ASME International Conference on, pages 26–31. IEEE, (2014)Google Scholar
  52. H. Zhang, K.-K. Liu, Optical tweezers for single cells. J. R. Soc. Interface. 5(24), 671–690 (2008)CrossRefGoogle Scholar
  53. X. Zhang, L. Ma, Y. Zhang, High-resolution optical tweezers for single-molecule manipulation. Yale J. Biol. Med. 86(3), 367 (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Mechanical Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael

Personalised recommendations