Biomedical Microdevices

, 18:23 | Cite as

PLGA-Listeriolysin O microspheres: Opening the gate for cytosolic delivery of cancer antigens

  • Ariel Gilert
  • Limor Baruch
  • Tomer Bronshtein
  • Marcelle Machluf
Article

Abstract

Strategies for cancer protein vaccination largely aim to activate the cellular arm of the immune system against cancer cells. This approach, however, is limited since protein vaccines mostly activate the system’s humoral arm instead. One way to overcome this problem is to enhance the cross-presentation of such proteins by antigen-presenting cells, which may consequently lead to intense cellular response. Here we examined the ability of listeriolysin O (LLO) incorporated into poly-lactic-co-glycolic acid (PLGA) microspheres to modify the cytosolic delivery of low molecular weight peptides and enhance their cross-presentation. PLGA microspheres were produced in a size suitable for uptake by phagocytic cells. The peptide encapsulation and release kinetics were improved by adding NaCl to the preparation. PLGA microspheres loaded with the antigenic peptide and incorporated with LLO were readily up-taken by phagocytic cells, which exhibited an increase in the expression of peptide-MHC-CI complexes on the cell surface. Furthermore, this system enhanced the activation of a specific T hybridoma cell line, thus simulating cytotoxic T cells. These results establish, for the first time, a proof of concept for the use of PLGA microspheres incorporated with a pore-forming agent and the antigen peptide of choice as a unique cancer protein vaccination delivery platform.

Keywords

PLGA LLO Cross-presentation Cancer immunotherapy Microspheres Drug delivery 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. A. L. Ackerman, P. Cresswell, Nat Immunol 5(7), 678–684 (2004)CrossRefGoogle Scholar
  2. M. J. Alonso, R. K. Gupta, C. Min, G. R. Siber, R. Langer, Vaccine 12(4), 299–306 (1994)CrossRefGoogle Scholar
  3. K. E. Beauregard, K. D. Lee, R. J. Collier, J. A. Swanson, J Exp Med 186(7), 1159–1163 (1997)CrossRefGoogle Scholar
  4. O. Benny, M. Duvshani-Eshet, T. Cargioli, L. Bello, A. Bikfalvi, R. S. Carroll and M. Machluf. Clin Cancer Res 11, 2 Pt 1, 768–776 (2005)Google Scholar
  5. O. Benny, L. G. Menon, G. Ariel, E. Goren, S. K. Kim, C. Stewman, P. M. Black, R. S. Carroll, M. Machluf, Clin Cancer Res 15(4), 1222–1231 (2009)CrossRefGoogle Scholar
  6. H. J. Byeon, I. Kim, J. S. Choi, E. S. Lee, B. S. Shin, Y. S. Youn, Int J Nanomedicine 10, 739–748 (2015)Google Scholar
  7. J. A. Champion, A. Walker, S. Mitragotri, Pharm Res 25(8), 1815–1821 (2008)CrossRefGoogle Scholar
  8. C. J. Cohen, O. Sarig, Y. Yamano, U. Tomaru, S. Jacobson, Y. Reiter, J Immunol 170(8), 4349–4361 (2003)CrossRefGoogle Scholar
  9. S. Fredenberg, M. Wahlgren, M. Reslow, A. Axelsson, Int J Pharm 415(1-2), 34–52 (2011)CrossRefGoogle Scholar
  10. C. A. Guzman, E. Domann, M. Rohde, D. Bruder, A. Darji, S. Weiss, J. Wehland, T. Chakraborty, K. N. Timmis, Mol Microbiol 20(1), 119–126 (1996)CrossRefGoogle Scholar
  11. K. Gvili, O. Benny, D. Danino, M. Machluf, Biopolymers 85(5-6), 379–391 (2007)CrossRefGoogle Scholar
  12. P. Hermann, M. Rubio, T. Nakajima, G. Delespesse, M. Sarfati, J Immunol 161(4), 2011–2018 (1998)Google Scholar
  13. J. Herrmann, R. Bodmeier, J Control Release 36(1), 63–71 (1995)CrossRefGoogle Scholar
  14. G. Jiang, B. C. Thanoo, P. P. DeLuca, Pharm Dev Technol 7(4), 391–399 (2002)CrossRefGoogle Scholar
  15. P. Johansen, Y. Men, H. P. Merkle, B. Gander, Eur J Pharm Biopharm 50(1), 129–146 (2000)CrossRefGoogle Scholar
  16. Jutras, I. and M. Desjardins. Annu Rev Cell Dev Biol 21, 511–527 (2005)Google Scholar
  17. J. Karttunen, S. Sanderson, N. Shastri, Proc Natl Acad Sci U S A 89(13), 6020–6024 (1992)CrossRefGoogle Scholar
  18. N. Lassam, G. Jay, J Immunol 143(11), 3792–3797 (1989)Google Scholar
  19. B. Ludewig, K. McCoy, M. Pericin, A. F. Ochsenbein, T. Dumrese, B. Odermatt, R. E. Toes, C. J. Melief, H. Hengartner, R. M. Zinkernagel, J Immunol 166(6), 3678–3687 (2001)CrossRefGoogle Scholar
  20. R. Mathaes, G. Winter, A. Besheer, J. Engert, Int J Pharm 465(1-2), 159–164 (2014)CrossRefGoogle Scholar
  21. M. Moser, O. Leo, Vaccine 28(Suppl 3), C2–13 (2010)CrossRefGoogle Scholar
  22. J. Mullerad, S. Cohen, D. Benharroch, R. N. Apte, Cancer Investig 21(5), 720–728 (2003)CrossRefGoogle Scholar
  23. R. C. Mundargi, V. R. Babu, V. Rangaswamy, P. Patel, T. M. Aminabhavi, J Control Release 125(3), 193–209 (2008)CrossRefGoogle Scholar
  24. M. O. Oyewumi, A. Kumar, Z. Cui, Expert Rev Vaccines 9(9), 1095–1107 (2010)CrossRefGoogle Scholar
  25. A. Porgador, J. W. Yewdell, Y. Deng, J. R. Bennink, R. N. Germain, Immunity 6(6), 715–726 (1997)CrossRefGoogle Scholar
  26. D. A. Portnoy, P. S. Jacks, D. J. Hinrichs, J Exp Med 167(4), 1459–1471 (1988)CrossRefGoogle Scholar
  27. C. J. Provoda, K. D. Lee, Adv Drug Deliv Rev 41(2), 209–221 (2000)CrossRefGoogle Scholar
  28. L. Ramachandra, R. S. Chu, D. Askew, E. H. Noss, D. H. Canaday, N. S. Potter, A. Johnsen, A. M. Krieg, J. G. Nedrud, W. H. Boom, C. V. Harding, Immunol Rev 168, 217–239 (1999)CrossRefGoogle Scholar
  29. K. L. Rock, L. Shen, Immunol Rev 207, 166–183 (2005)CrossRefGoogle Scholar
  30. S. Sanderson, N. Shastri, Int Immunol 6(3), 369–376 (1994)CrossRefGoogle Scholar
  31. D. W. Schuerch, E. M. Wilson-Kubalek, R. K. Tweten, Proc Natl Acad Sci U S A 102,(35), 12537–12542 (2005)CrossRefGoogle Scholar
  32. S. Seveau, Multifaceted activity of listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes (MACPF/CDC Proteins-Agents of Defence, Attack and Invasion, Springer, 2014), pp. 161–195Google Scholar
  33. H. Shen, A. L. Ackerman, V. Cody, A. Giodini, E. R. Hinson, P. Cresswell, R. L. Edelson, W. M. Saltzman, D. J. Hanlon, Immunology 117(1), 78–88 (2006)CrossRefGoogle Scholar
  34. Z. Shen, G. Reznikoff, G. Dranoff, K. L. Rock, J Immunol 158(6), 2723–2730 (1997)Google Scholar
  35. A. Shivinsky, T. Bronshtein, T. Haber, M. Machluf, Biomed Microdevices 17(4), 1–15 (2015)CrossRefGoogle Scholar
  36. J. M. Silva, M. Videira, R. Gaspar, V. Preat, H. F. Florindo, J Control Release 168(2), 179–199 (2013)CrossRefGoogle Scholar
  37. T. M. Strutt, K. K. McKinstry, S. L. Swain, Adv Exp Med Biol 780, 57–68 (2011)CrossRefGoogle Scholar
  38. Z. Su, F. Sun, Y. Shi, C. Jiang, Q. Meng, L. Teng, Y. Li, Chem Pharm Bull (Tokyo) 57(11), 1251–1256 (2009)CrossRefGoogle Scholar
  39. Tamber, H., P. Johansen, H. P. Merkle and B. Gander. Adv Drug Deliv Rev 57, 3, 357–376 (2005)Google Scholar
  40. C. Thomas, V. Gupta, F. Ahsan, Pharm Res 27(5), 905–919 (2010)CrossRefGoogle Scholar
  41. S. Vertuani, C. Triulzi, A. K. Roos, J. Charo, H. Norell, F. Lemonnier, P. Pisa, B. Seliger, R. Kiessling, Cancer Immunol Immunother 58(5), 653–664 (2009)CrossRefGoogle Scholar
  42. Y. Yeo, K. Park, Arch Pharm Res 27(1), 1–12 (2004)CrossRefGoogle Scholar
  43. S. Zhang, H. Zhang, J. Zhao, Biochem Biophys Res Commun 384(4), 405–408 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ariel Gilert
    • 1
  • Limor Baruch
    • 1
  • Tomer Bronshtein
    • 1
  • Marcelle Machluf
    • 1
  1. 1.The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology & Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations