Biomedical Microdevices

, 18:19 | Cite as

Lactate and glucose measurement in subepidermal tissue using minimally invasive microperfusion needle

  • Noriko Tsuruoka
  • Kenji Ishii
  • Tadao Matsunaga
  • Ryoichi Nagatomi
  • Yoichi Haga
Article

Abstract

Knowing the concentrations of biological substances can help ascertain physiological and pathological states. In the present study, a minimally invasive microperfusion needle was developed for measuring the concentrations of biological substances in subepidermal tissue. The microperfusion needle has a flow channel with a perforated membrane through which biological substances from subepidermal tissue are extracted. Since this device uses a thin steel acupuncture needle as the base substrate, it has sufficient rigidity for insertion through the skin. The efficacy of the needle was examined by measuring lactate and glucose concentrations in mice. Lactate was injected intraperitoneally, and changes in lactate concentrations in subepidermal tissue over time were measured using the device. Lactate concentrations of blood were also measured as a reference. Lactate was successfully collected using the microperfusion needle, and the lactate concentration of perfused saline was significantly correlated with blood lactate concentration. Glucose solution was administered orally, and the glucose concentration of perfused saline was also correlated with blood glucose concentration. The newly developed microperfusion needle can be used for minimally invasive monitoring of the concentrations of biological substances.

Keywords

Microperfusion Lactate measurement Glucose measurement Subepidermal Non-planar microfabrication 

Notes

Acknowledgments

This research is partially supported by the Center of Innovation Program from Japan Science and Technology Agency, JST. This research is partially supported by Grant Program for Biomedical Engineering Research (Development Research) from Nakatani Foundation.

References

  1. R. Boellaard, A. van Lingen, S. C. M. van Balen, B. G. Hoving, A. A. Lammertsma, Eur. J. Nucl. Med. 28, 81–89 (2001)CrossRefGoogle Scholar
  2. J. Bolinder, U. Ungerstedt, P. Arner, Lancet 342, 1080–1085 (1993)CrossRefGoogle Scholar
  3. J. de Boer, F. Postema, H. Plijter-Groendijk, J. Korf, Pflugers Arch. 419, 1–6 (1991)CrossRefGoogle Scholar
  4. J. de Boer, H. Plijter-Groendijk, J. Korf, Eur. Lancet. 340, 547–548 (1992)CrossRefGoogle Scholar
  5. J. de Boer, H. Plijter-Groendijk, K. R. Visser, G. A. Mook, J. Korf, Eur. J. Appl. Physiol. 69, 281–286 (1994)CrossRefGoogle Scholar
  6. C. Douvin, D. Simon, H. Zinelabidine, V. Wirquin, L. Perlemuter, D. Dhumeaux, N. Engl, J. Med. 322, 57–58 (1990)Google Scholar
  7. M. Ellmerer, L. Schaupp, Z. Trajanoski, G. Jobst, I. Moser, G. Urban, F. Skrabal, P. Wach, Biosens. Bioelectron. 13, 1007–1013 (1998)CrossRefGoogle Scholar
  8. M. H. Faridnia, G. Palleschi, G. J. Lubrano, G. G. Guilbault, Analytica. Chmica. Acta. 278, 35–40 (1993)CrossRefGoogle Scholar
  9. K. N. Frayn, S. W. Coppack, S. M. Humphreys, P. L. Whyte, Clin. Sci. 76, 509–516 (1989)CrossRefGoogle Scholar
  10. S. Goto, T. Matsunaga, J. J. Chen, W. Makishi, M. Esashi, Y. Haga, Proc. MMB, 217–220 (2006). doi: 10.1109/MMB.2006.251532
  11. M. Groschl, M. Rauh, Steroids 71, 1097–1100 (2006)CrossRefGoogle Scholar
  12. T. M. Gross, B. W. Bode, D. Einhorn, D. M. Kayne, J. H. Reed, N. H. White, J. J. Mastrototaro, Diabetes Technol. Ther. 2, 49–56 (2000)CrossRefGoogle Scholar
  13. Y. Hashiguchi, M. Sakakida, K. Nishida, T. Uemura, K.-I. Kajiwara, M. Shichiri, Diabetes Care 17, 387–396 (1994)CrossRefGoogle Scholar
  14. P.-A. Jansson, J. Fowelin, U. Smith, P. Lonnroth, Am. J. Physiol. 255, E218–E220 (1988)Google Scholar
  15. P.-A. Jansson, U. Smith, P. Lonnroth, Diabetologia 33, 253–256 (1990)CrossRefGoogle Scholar
  16. P. Lonnroth, P. –. A. Jansson, U. Smith, Am. J. Physiol. 253, E228–E231 (1987)Google Scholar
  17. D. G. Maggs, R. Jacob, F. Rife, R. Lange, P. Leone, M. J. During, W. V. Tamborlane, R. S. Sherwin, J. Clin, Invest. 96, 370–377 (1995)CrossRefGoogle Scholar
  18. C. Meyerhoff, F. Bischof, F. Sternberg, H. Zier, E. F. Pfeiffer, Diabetologia 35, 1087–1092 (1992)CrossRefGoogle Scholar
  19. R. W. Min, V. Rajendran, N. Larsson, L. Gorton, J. Planas, B. Hahn-Hagerdal, Analytica. Chimica. Acta. 366, 127–135 (1998)CrossRefGoogle Scholar
  20. K. Mitsubayashi, M. Suzuki, E. Tamiya, I. Karube, Analytica. Chimica. Acta. 289, 27–34 (1994)CrossRefGoogle Scholar
  21. V. Rajendran, J. Irudayaraj, J. Dairy Sci. 85, 1357–1361 (2002)CrossRefGoogle Scholar
  22. A. C. F. Ribeiro, V. M. M. Lobo, D. G. Leaist, J. J. S. Natividade, L. P. Verissimo, M. C. F. Barros, A. M. T. D. P. V. Cabral, J. Solution Chem. 34, 1009–1016 (2005)CrossRefGoogle Scholar
  23. A. C. F. Ribeiro, O. Ortona, S. M. N. Simoes, C. I. A. V. Santos, P. M. R. A. Prazeres, A. J. M. Valente, V. M. M. Lobo, H. D. Burrows, J. Chem, Eng. Datas. 51, 1836–1840 (2006)CrossRefGoogle Scholar
  24. F. J. Schmidt, W. J. Sluter, A. J. M. Schoonen, Diabetes Care 16, 695–700 (1993)CrossRefGoogle Scholar
  25. F. Sternberg, C. Meyerhoff, F. J. Mennel, F. Bischof, E. F. Pfeiffer, Diabetes Care 18, 1266–1269 (1995)CrossRefGoogle Scholar
  26. R. K. Tanner, K. L. Fuller, M. L. R. Ross, Eur. J. Appl. Physiol. 109, 551–559 (2010)CrossRefGoogle Scholar
  27. O. Tochikubo, S. Uneda, Y. Kaneko, Hypertension 5, 270–274 (1983)CrossRefGoogle Scholar
  28. Z. Trajanoski, P. Wach, G. A. Brunner, T. R. Pieber, L. Schaupp, P. Kotanko, M. Ellmerer, F. Skarabal, Diabetes Care 20, 1114–1121 (1997)CrossRefGoogle Scholar
  29. T. Vering, S. Adam, H. Drewer, C. Dumschat, R. Steinkuhl, A. Schulze, E. G. Siegel, M. Knoll, Analyst 123, 1605–1609 (1998)CrossRefGoogle Scholar
  30. Q. Yang, P. Atanasov, E. Wilkins, Electroanalysis 10, 752–757 (1998)CrossRefGoogle Scholar
  31. J. D. Zahn, D. Trebotich, D. Liepmann, Biomed. Microdevices 7, 59–69 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Noriko Tsuruoka
    • 1
  • Kenji Ishii
    • 1
  • Tadao Matsunaga
    • 2
  • Ryoichi Nagatomi
    • 3
  • Yoichi Haga
    • 3
  1. 1.Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Micro System Integration Center (μSIC)Tohoku UniversitySendaiJapan
  3. 3.Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan

Personalised recommendations