Biomedical Microdevices

, 18:35 | Cite as

An integrated interface for peripheral neural system recording and stimulation: system design, electrical tests and in-vivo results

  • Caterina CarboniEmail author
  • Lorenzo Bisoni
  • Nicola Carta
  • Roberto Puddu
  • Stanisa Raspopovic
  • Xavier Navarro
  • Luigi Raffo
  • Massimo Barbaro


The prototype of an electronic bi-directional interface between the Peripheral Nervous System (PNS) and a neuro-controlled hand prosthesis is presented. The system is composed of 2 integrated circuits: a standard CMOS device for neural recording and a HVCMOS device for neural stimulation. The integrated circuits have been realized in 2 different 0.35μ m CMOS processes available from ams. The complete system incorporates 8 channels each including the analog front-end, the A/D conversion, based on a sigma delta architecture and a programmable stimulation module implemented as a 5-bit current DAC; two voltage boosters supply the output stimulation stage with a programmable voltage scalable up to 17V. Successful in-vivo experiments with rats having a TIME electrode implanted in the sciatic nerve were carried out, showing the capability of recording neural signals in the tens of microvolts, with a global noise of 7μ V r m s , and to selectively elicit the tibial and plantar muscles using different active sites of the electrode.


Multi-channel neural recording Neural stimulation Bioelectronic devices 



This work was partially funded by MIUR (Italian Ministry of Education, University and Research) through project HANDBOT (PRIN 2010/2011), by Italian Ministry of Health through project NEMESIS and by the European Commission, ICT-2013.9.6 FET Proactive: Evolving Living Technologies (EVLIT), through project NEBIAS (n.611687). L. Bisoni gratefully acknowledges Sardinia Regional Government for the financial support of his Ph.D. scholarship (P.O.R. Sardegna F.S.E. Operational Programme of the Autonomous Region of Sardinia, European Social Fund 2007-2013 - Axis IV Human Resources, Objective l.3, Line of Activity l.3.1.). C. Carboni and N. Carta gratefully acknowledge Sardinia Regional Government for the financial support to their research grant.


  1. T. Akin, K. Najafi, R. Bradley, A wireless implantable multichannel digital neural recording system for a micromachined sieve electrode. IEEE J. Solid State Circ. 33(1), 109–118 (1998). doi: 10.1109/4.654942 CrossRefGoogle Scholar
  2. C. Antfolk, M. D’Alonzo, M. Controzzi, G. Lundborg, B. Rosen, F. Sebelius, C. Cipriani, Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: Vibrotactile versus mechanotactile sensory feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 21(1), 112–120 (2013). doi: 10.1109/TNSRE.2012.2217989 CrossRefGoogle Scholar
  3. S. Arfin, R. Sarpeshkar, An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation. IEEE Trans. Biomed. Circuits Syst. 6(1), 1–14 (2012). doi: 10.1109/TBCAS.2011.2166072 CrossRefGoogle Scholar
  4. L. Bisoni, C. Carboni, L. Raffo, N. Carta, M. Barbaro, A hv-cmos integrated circuit for neural stimulation in prosthetic applications. IEEE Trans. Circ. Syst. II Express Briefs PP. 99, 1–1 (2015). doi: 10.1109/TCSII.2014.2387679 Google Scholar
  5. T. Boretius, A. Pascual-Font, E. Udina, T. Stieglitz, X. Navarro, Biocompatibility of chronically implanted transverse intrafascicular multichannel electrode (time) in the rat sciatic nerve. IEEE Trans. Biomed. Eng. 58(8), 2324–2332 (2011)CrossRefGoogle Scholar
  6. A. Borna, K. Najafi, A low power light weight wireless multichannel microsystem for reliable neural recording. IEEE J. Solid State Circ. 49(2), 439–451 (2014). doi: 10.1109/JSSC.2013.2293773 CrossRefGoogle Scholar
  7. C. Carboni, N. Carta, M. Barbaro, L. Raffo, A sigma-delta architecture for recording of peripheral neural signals in prosthetic applications. 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 448–453 (2012)Google Scholar
  8. C.T. Clarke, X. Xu, R. Rieger, J. Taylor, N. Donaldson, An implanted system for multi-site nerve cuff-based eng recording using velocity selectivity. Analog Integr. Circ. Sig. Process. 58(2), 91–104 (2009)CrossRefGoogle Scholar
  9. A. Demosthenous, I. Pachnis, D. Jiang, N. Donaldson, An integrated amplifier with passive neutralization of myoelectric interference from neural recording tripoles. Sensors Journal IEEE. 13(9), 3236–3248 (2013). doi: 10.1109/JSEN.2013.2271477 CrossRefGoogle Scholar
  10. G.S. Dhillon, K.W. Horch, Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neural Syst. Rehabil. Eng., 468–472 (2005)Google Scholar
  11. H. Gao, R. Walker, P. Nuyujukian, K. Makinwa, K. Shenoy, B. Murmann, T. Meng, Hermese: A 96-channel full data rate direct neural interface in 0.13 m cmos. IEEE J. Solid State Circuits. 47(4), 1043–1055 (2012)CrossRefGoogle Scholar
  12. B. Gosselin, A. Ayoub, J.F. Roy, M. Sawan, F. Lepore, A. Chaudhuri, D. Guitton, A mixed-signal multichip neural recording interface with bandwidth reduction. IEEE Trans. Biomed. Circuits Syst. 3(3), 129–141 (2009). doi: 10.1109/TBCAS.2009.2013718 CrossRefGoogle Scholar
  13. R.R. Harrison, A versatile integrated circuit for the acquisition of biopotentials. Custom Integrated Circuits Conference, 115–122 (2007)Google Scholar
  14. R.R Harrison, C. Charles, A low-power low-noise cmos amplifier for neural recording applications. IEEE J. Solid State Circuits. 38, 958–965 (2003)CrossRefGoogle Scholar
  15. R.R. Harrison, R.J. Kier, C.A. Chestek, V. Gilja, P. Nuyujukian, S. Ryu, B. Greger, F Solzbacher, K.V. Shenoy, Wireless neural recording with single low-power integrated circuit. IEEE Trans. Neural Syst. Rehabil. Eng., 322–329 (2009)Google Scholar
  16. J. He, C. Ma, R. Herman, Engineering neural interfaces for rehabilitation of lower limb function in spinal cord injured. Proc. of IEEE. 96(7), 1152–1166 (2008). doi: 10.1109/JPROC.2008.922593 CrossRefGoogle Scholar
  17. J. Lee, H.G. Rhew, D.R. Kipke, M.P. Flynn, A 64 channel programmable closed-loop neurostimulator with 8 channel neural amplifier and logarithmic adc. IEEE J. Solid State Circuits. 45, 1935–1945 (2010)CrossRefGoogle Scholar
  18. X. Liu, A. Demosthenous, A. Vanhoestenberghe, D. Jiang, N. Donaldson, Active books: The design of an implantable stimulator that minimizes cable count using integrated circuits very close to electrodes. IEEE Trans. Biomed. Circuits Syst. 6(3), 216–227 (2012)CrossRefGoogle Scholar
  19. D. Loi, C. Carboni, G. Angius, G. Angotzi, M. Barbaro, L. Raffo, S. Raspopovic, X. Navarro, Peripheral neural activity recording and stimulation system. IEEE Trans. Biomed. Circuits Syst. 5(4), 368–379 (2011). doi: 10.1109/TBCAS.2011.2123097 CrossRefGoogle Scholar
  20. C. Lopez, A. Andrei, S. Mitra, M. Welkenhuysen, W. Eberle, C. Bartic, R. Puers, R. Yazicioglu, G. Gielen, An implantable 455-active-electrode 52-channel cmos neural probe. IEEE J. Solid State Circuits. 49(1), 248–261 (2014). doi: 10.1109/JSSC.2013.2284347 CrossRefGoogle Scholar
  21. S. Micera, J. Carpaneto, S. Raspopovic, Control of hand prostheses using peripheral information. IEEE Rev. Biomed. Eng. 3, 48–68 (2010a). doi: 10.1109/RBME.2010.2085429 CrossRefGoogle Scholar
  22. S. Micera, L. Citi, J. Rigosa, J. Carpaneto, S. Raspopovic, G. Di Pino, L. Rossini, K. Yoshida, L. Denaro, P. Dario, PM. Rossini, Decoding information from neural signals recorded using intraneural electrodes: Toward the development of a neurocontrolled hand prosthesis. Proc. of IEEE. 98(3), 407–417 (2010b)CrossRefGoogle Scholar
  23. M. Mollazadeh, K. Murari, G. Cauwenberghs, N. Thakor, Wireless micropower instrumentation for multimodal acquisition of electrical and chemical neural activity. IEEE Trans. Biomed. Circuits Syst. 3(6), 388–397 (2009). doi: 10.1109/TBCAS.2009.2031877 CrossRefGoogle Scholar
  24. X. Navarro, T.B. Krueger, N. Lago, S. Micera, T. Stieglitz, P. Dario, A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses anf hybrid bionic systems. J. Peripher. Nerv. Syst., 229–258 (2005)Google Scholar
  25. W. Patterson, Y.K. Song, C. Bull, I. Ozden, A. Deangellis, C. Lay, J. McKay, A. Nurmikko, J. Donoghue, B. Connors, A microelectrode/microelectronic hybrid device for brain implantable neuroprosthesis applications. IEEE Trans. Biomed. Eng. 51(10), 1845–1853 (2004). doi: 10.1109/TBME.2004.831521 CrossRefGoogle Scholar
  26. S. Raspopovic, M. Capogrosso, J. Badia, X. Navarro, S. Micera, Experimental validation of a hybrid computational model for selective stimulation using transverse intrafascicular multichannel electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 20(3), 395–404 (2012). doi: 10.1109/TNSRE.2012.2189021 CrossRefGoogle Scholar
  27. S. Raspopovic, M. Capogrosso, F.M. Petrini, M. Bonizzato, J. Rigosa, G. Di Pino, J. Carpaneto, M. Controzzi, T. Boretius, E. Fernandez, G. Granata, C.M. Oddo, L. Citi, A.L. Ciancio, C. Cipriani, M.C. Carrozza, W. Jensen, E. Guglielmelli, T. Stieglitz, P.M. Rossini, S. Micera, Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6(222), 222ra19 (2014). doi: 10.1126/scitranslmed.3006820 CrossRefGoogle Scholar
  28. B. Razavi, Design of analog cmos integrated circuits. McGRAW HILL International Edition (2001)Google Scholar
  29. R. Rieger, J. Taylor, A. Demosthenous, N. Donaldson, P.J. Langlois, Design of a low-noise preamplifier for nerve cuff electrode recording. IEEE J. Solid State Circuits. 38(8), 1373–1379 (2003)CrossRefGoogle Scholar
  30. R. Rieger, M. Schuettler, D. Pal, C. Clarke, P. Langlois, J. Taylor, N. Donaldson, Very low-noise eng amplifier system using cmos technology. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 427–437 (2006)CrossRefGoogle Scholar
  31. M. Roham, D. Covey, D. Daberkow, E. Ramsson, C. Howard, B. Heidenreich, P. Garris, P. Mohseni, A wireless ic for time-share chemical and electrical neural recording. IEEE J. Solid State Circuits. 44(12), 3645–3658 (2009). doi: 10.1109/JSSC.2009.2035549 CrossRefGoogle Scholar
  32. J. Sacristán-Riquelme, M. Osés, Implantable stimulator and recording device for artificial prosthesis control. Microelectron. J. 38, 1135–1149 (2007)CrossRefGoogle Scholar
  33. R. Schreier, C.T. Gabor, Understanding delta sigma data converters. IEEE Press/Wiley-Interscience (2001)Google Scholar
  34. F. Shahrokhi, K. Abdelhalim, D. Serletis, P.L. Carlen, R. Genov, The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans. Biomed. Circuits Syst. 4, 149–161 (2010)CrossRefGoogle Scholar
  35. M. Velliste, S. Perel, M. Spalding, A. Whitford, A. Schwartz, Cortical control of a prosthetic arm for self-feeding. Nature. 453, 1098–1101 (2008)CrossRefGoogle Scholar
  36. S. Venkatraman, K. Elkabany, J.D. Long, Y. Yao, J.M. Carmena, A system for neural recording and closed-loop intracortical microstimulation in awake rodents. IEEE Trans. Biomed. Eng. 56, 15–22 (2009)CrossRefGoogle Scholar
  37. C. Veraart, W. Grill, J. Mortimer, Selective control of muscle activation with a multipolar nerve cuff electrode. IEEE Trans. Biomed. Eng. 40(7), 640–653 (1993). doi: 10.1109/10.237694 CrossRefGoogle Scholar
  38. Y. Wang, Z. Wang, X. Lu, H. Wang, Fully integrated and low power cmos amplifier for neural signal recording. IEEE Engineering in Medicine and Biology Society, 5250–5230 (2005)Google Scholar
  39. W. Wattanapanitch, R. Sarpeshkar, A low-power 32-channel digitally programmable neural recording integrated circuit. IEEE Trans. Biomed. Eng. 5(6), 593–602 (2011)Google Scholar
  40. W. Wattanapanitch, M. Fee, R. Sarpeshkar, An energy-efficient micropower neural recording amplifier. IEEE Trans. Biomed. Circuits Syst. 1, 136–147 (2007)CrossRefGoogle Scholar
  41. I. Williams, T. Constandinou, An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. IEEE Trans. Biomed. Circuits Syst. 7(2), 129–139 (2013). doi: 10.1109/TBCAS.2013.2256906 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Caterina Carboni
    • 1
    Email author
  • Lorenzo Bisoni
    • 1
  • Nicola Carta
    • 1
  • Roberto Puddu
    • 1
  • Stanisa Raspopovic
    • 2
  • Xavier Navarro
    • 3
  • Luigi Raffo
    • 1
  • Massimo Barbaro
    • 1
  1. 1.Università di CagliariCagliariItaly
  2. 2.École Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Universitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations