Advertisement

Dielectrophoretic characterization of cells in a stationary nanoliter droplet array with generated chemical gradients

Abstract

A novel design of reusable microfluidic platform that generates a stationary nanoliter droplet array (SNDA) for cell incubation and analysis, equipped with a complementary array of individually addressable electrodes for each microwell is studied. Various solute concentration gradients were generated between the wells where dielectrophoresis (DEP) was used to characterize the effect of the gradients on the cell’s response. The feasibility of generating concentration gradients and observation of DEP responses was demonstrated using a gradient of salts in combination with microparticles and viable cells. L1210 Lymphoma cells were used as the model cells in these experiments. Lymphoma cells' cross-over frequency (COF) decreased with increasing stress conditions. Specifically, a linear decrease in the cell COF was measured as a function of solution tonicity and blebbistatin dose. Lymphoma cells were incubated under a gradient of the chemotherapeutic agent doxorubicin (DOX), which led to saturation in the cell-COF response at 30 nM DOX, demonstrating the potential of the platform in screening of label-free drugs.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. V.V. Abhyankar, M. A. Lokuta, A. Huttenlocher and D. J. Beebe, Lab Chip, 2006, 6, 389–393.

  2. M. Alshareef, N. Metrakos, E. Juarez Perez, F. Azer, F. Yang, X. Yang and G. Wang, Biomicrofluidics, 2013, 7, 11803.

  3. J. Avesar, T. Ben Arye and S. Levenberg, Lab Chip, 2014, 14, 2161–2167.

  4. S. Basuray and H.-C. Chang, Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 2007, 75, 060501.

  5. B.G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki and N. L. Jeon, Lab Chip, 2005, 5, 401–406.

  6. K. Cohen, R. Emmanuel, E. Kisin-Finfer, D. Shabat and D. Peer, ACS Nano, 2014, 8, 2183–2195.

  7. Y. Du, J. Shim, M. Vidula, M.J. Hancock, E. Lo, B.G. Chung, J.T. Borenstein, M. Khabiry, D.M. Cropek, A. Khademhosseini, Lab Chip 9, 761–767 (2009)

  8. M.S. Duxbury, S. W. Ashley and E. E. Whang, Biochem. Biophys. Res. Commun., 2004, 313, 992–997.

  9. J. El-Ali, P. K. Sorger and K. F. Jensen, Nature, 2006, 442, 403–411.

  10. C. W. Frevert, G. Boggy, T. M. Keenan and A. Folch, Lab Chip, 2006, 6, 849–856.

  11. Z.R. Gagnon, Electrophoresis, 2011, 32, 2466–2487.

  12. A. Ganoth, K. C. Merimi and D. Peer, Expert Opin. Drug Deliv., 2015, 12, 223–238.

  13. D. Gao, H. Liu, Y. Jiang, J.-M. Lin, D. Gao, H. Liu and Y. Jiang, Trends Anal. Chem.., 2012, 35, 150–164.

  14. P. Gascoyne, R. Pethig, J. Satayavivad, F. F. Becker and M. Ruchirawat, Biochim. Biophys. Acta 1997, 1323, 240–252.

  15. P.R. C. Gascoyne, J. Noshari, T. J. Anderson and F. F. Becker, Electrophoresis, 2009, 30, 1388–1398.

  16. T. Geng and C. Lu, Lab Chip, 2013, 13, 3803–3821.

  17. N.G. Green and H. Morgan, J. Phys. Chem. B, 1999, 103, 41–50.

  18. F.S. Hamdi, O. Français, E. Dufour-Gergam and B. Le Pioufle, Bioelectrochemistry, 2014, 100, 27–35.

  19. R.F. Ismagilov, A. D. Stroock, P. J. A. Kenis, G. Whitesides and H. A. Stone, Appl. Phys. Lett., 2000, 76, 2376–2378.

  20. N.L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock and G. M. Whitesides, Langmuir, 2000, 16, 8311–8316.

  21. K. Khoshmanesh, S. Nahavandi, S. Baratchi, A. Mitchell and K. Kalantar-zadeh, Biosens. Bioelectron., 2011, 26, 1800–1814.

  22. D. Kim, M. A. Lokuta, A. Huttenlocher and D. J. Beebe, Lab Chip, 2009, 9, 1797–1800.

  23. S. Kim, H. J. Kim and N. L. Jeon, Integr. Biol. , 2010, 2, 584–603.

  24. J. Kolega, Biochem. Biophys. Res. Commun., 2004, 320, 1020–1025.

  25. T. Liu, C. Li, H. Li, S. Zeng, J. Qin and B. Lin, Electrophoresis, 2009, 30, 4285–4291.

  26. E. Markovsky, H. Baabur-Cohen and R. Satchi-Fainaro, J. Control. Release, 2014, 187, 145–157.

  27. D. Morganti and H. Morgan, Colloids Surf. A Physicochem. Eng. Asp.., 2011, 376, 67–71.

  28. B. Mosadegh, C. Huang, J.W. Park, H.S. Shin, B.G. Chung, S.-K. Hwang, K.-H. Lee, H.J. Kim, J. Brody, N.L. Jeon, Langmuir 23, 10910–10912 (2007)

  29. F.-Q. Nie, M. Yamada, J. Kobayashi, M. Yamato, A. Kikuchi and T. Okano, Biomaterials, 2007, 28, 4017–4022.

  30. S. Park, D. B. Bassat and G. Yossifon, Biomicrofluidics, 2014, 8, 024117.

  31. R. Pethig, Biomicrofluidics, 2010, 4, 022811.

  32. H.A. Pohl, H.A. Pohl, in Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields, vol 80 (Cambridge University press, Cambridge, 1978)

  33. K. Ratanachoo, P. R. C. Gascoyne and M. Ruchirawat, Biochim. Biophys. Acta 2002, 1564, 449–458.

  34. D. Rosenblum and D. Peer, Cancer Lett., 2014, 352, 126–136.

  35. L. Rozitsky, A. Fine, D. Dado, S. Nussbaum-Ben-Shaul, S. Levenberg and G. Yossifon, Biomed. Microdevices, 2013, 15, 859–865.

  36. Š. Selimović, W.Y. Sim, S.B. Kim, Y.H. Jang, W.G. Lee, M. Khabiry, H. Bae, S. Jambovane, J.W. Hong, A. Khademhosseini, Anal. Chem. 83, 2020–2028 (2011)

  37. J. Shemesh, T.B. Arye, J. Avesar, J.H. Kang, A. Fine, M. Super, A. Meller, D.E. Ingber, S. Levenberg, Proc. Natl. Acad. Sci. 111, 11293–11298 (2014)

  38. M. Sun, S. S. Bithi and S. A. Vanapalli, Lab Chip, 2011, 11, 3949–3952.

  39. G. Velve-Casquillas, M. Le Berre, M. Piel and P. T. Tran, Nano Today, 2010, 5, 28–47.

  40. V. Vickerman, J. Blundo, S. Chung and R. Kamm, Lab Chip, 2008, 8, 1468–1477.

  41. J. Voldman, Annu. Rev. Biomed. Eng., 2006, 8, 425–454.

  42. S.-J. Wang, W. Saadi, F. Lin, C. Minh-Canh Nguyen and N. Li Jeon, Exp. Cell Res., 2004, 300, 180–189.

  43. C.-G. Yang, Y.-F. Wu, Z.-R. Xu and J.-H. Wang, Lab Chip, 2011, 11, 3305–3312.

  44. N. Ye, J. Qin, X. Liu, W. Shi and B. Lin, Electrophoresis, 2007, 28, 1146–1153.

Download references

Acknowledgments

The research was supported by MOST—Tashtiyot Grant No. 880011. The fabrication of the chip was made possible through the financial and technical support of the Technion RBNI (Russell Berrie Nanotechnology Institute) and MNFU (Micro Nano Fabrication Unit). We would like to thank Dr. Anna Scomparin and Prof. Ronit Satchi-Fainaro for the DOX sample and protocol.

Author information

Correspondence to Gilad Yossifon.

Additional information

T. Ben-Arye and S. Park contributed equally to this work.

Electronic supplementary material

(WMV 1301 kb)

(WMV 2130 kb)

Supplementary Movie 1

(WMV 1301 kb)

Supplementary Movie 2

(WMV 2130 kb)

ESM 1

(DOCX 714 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ben-Arye, T., Park, S., Shemesh, J. et al. Dielectrophoretic characterization of cells in a stationary nanoliter droplet array with generated chemical gradients. Biomed Microdevices 17, 91 (2015). https://doi.org/10.1007/s10544-015-9996-z

Download citation

Keywords

  • Microfluidics
  • Cell analysis
  • Dielectrophoresis