Advertisement

Biomedical Microdevices

, 17:88 | Cite as

A multilayered microfluidic blood vessel-like structure

  • Anwarul HasanEmail author
  • Arghya Paul
  • Adnan Memic
  • Ali KhademhosseiniEmail author
Article

Abstract

There is an immense need for tissue engineered blood vessels. However, current tissue engineering approaches still lack the ability to build native blood vessel-like perfusable structures with multi-layered vascular walls. This paper demonstrated a new method to fabricate tri-layer biomimetic blood vessel-like structures on a microfluidic platform using photocrosslinkable gelatin hydrogel. The presented method enables fabrication of physiological blood vessel-like structures with mono-, bi- or tri-layer vascular walls. The diameter of the vessels, the total thickness of the vessel wall and the thickness of each individual layer of the wall were independently controlled. The developed fabrication process is a simple and rapid method, allowing the physical fabrication of the vascular structure in minutes, and the formation of a vascular endothelial cell layer inside the vessels in 3–5 days. The fabricated vascular constructs can potentially be used in numerous applications including drug screening, development of in vitro models for cardiovascular diseases and/or cancer metastasis, and study of vascular biology and mechanobiology.

Keywords

Tissue engineering Microfluidics Blood vessel Hydrogel PDMS Microfabrication 

Notes

Acknowledgments

Anwarul Hasan acknowledges the startup grant and the URB (University Research Board) grant from American University of Beirut, Lebanon, and the CNRS (National Council for Scientific Research) grant, Lebanon. Ali Khademhosseini acknowledges funding from the National Science Foundation (EFRI-1240443), IMMODGEL (602694), and the National Institutes of Health (EB012597, AR057837, DE021468, HL099073, AI105024, AR063745). The authors acknowledge the assistance from Gi Seok Jeong in drawing/editing a part of Fig. 1, and scientific/technical discussions with Joe Tien from Boston University. Arghya Paul likes to acknowledge the Institutional Development Award (IDeA) from the National Institute of General Medical Sciences, National Institutes of Health (NIH), under Award Number P20GM103638-04. Adnan Memic and Ali Khademhosseini would like to thank the National Plan for Science, Technology and Innovation (MAARIFAH) by King Abdulaziz City for Science and Technology, Grant No. 12-MED3096-3 for their support and funding of this project.

Supplementary material

10544_2015_9993_MOESM1_ESM.docx (110 kb)
FIG. S1 Optimization of GelMA concentration for fabrication of blood vessel-like structures: phase contrast images showing smoothness of the tube surface at different concentrations of GelMA. At (a) 4 % and (b) 8 % concentrations, the surface of the lumen got ruptured during the retrieval of the needle after gel formation. At (c) 12 % and higher concentrations the gels were strong enough to retain their structures and resulted in smooth channels. i.e., stiffer GlelMA resulted in smoother channel compared to low concentration GelMA. Scale bar = 200 μm. (DOCX 110 kb)
10544_2015_9993_MOESM2_ESM.docx (144 kb)
FIG. S2 Optimization of mechanical properties of fabricated blood vessel-like structures was performed using uniaxial compressive mechanical test on fabricated cell laden monolayer blood vessel-like structures, (a) schematic and dimension of the constructs for mechanical test, (b) stress–strain graph, (c) compressive modulus, (d) failure stress and (e) failure strain for vessels of different GelMA concentrations. The compressive modulus and failure stress of the constructs increased while the failure strain decreased with increase in GelMA concentration. (DOCX 144 kb)

References

  1. J. Barthes, H. Özçelik, M. Hindié, A. Ndreu-Halili, A. Hasan, N.E. Vrana, Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. BioMed research international 2014, p. 18. doi: 10.1155/2014/921905
  2. J.A. Benton, C.A. Deforest, V. Vivekanandan, K.S. Anseth, Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Eng. Part A 15, 3221–30 (2009)CrossRefGoogle Scholar
  3. M.B. Browning, D. Dempsey, V. Guiza, S. Becerra, J. Rivera, B. Russell, M. Höök, F. Clubb, M. Miller, T. Fossum, J.F. Dong, A.L. Bergeron, M. Hahn, E. Cosgriff-Hernandez, Multilayer vascular grafts based on collagen-mimetic proteins. Acta Biomater. 8, 1010–21 (2012)CrossRefGoogle Scholar
  4. L. Cao, P.R. Arany, Y.S. Wang, D.J. Mooney, Promoting angiogenesis via manipulation of VEGF responsiveness with notch signaling. Biomaterials 30, 4085–93 (2009)CrossRefGoogle Scholar
  5. R.R. Chen, E.A. Silva, W.W. Yuen, A.A. Brock, C. Fischbach, A.S. Lin, R.E. Guldberg, D.J. Mooney, Integrated approach to designing growth factor delivery systems. Faseb J. 21, 3896–903 (2007)CrossRefGoogle Scholar
  6. Y.-C. Chen, R.-Z. Lin, H. Qi, Y. Yang, H. Bae, J.M. Melero-Martin, A. Khademhosseini, Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv. Funct. Mater. 22, 2027–39 (2012)CrossRefGoogle Scholar
  7. K.M. Chrobak, D.R. Potter, J. Tien, Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71, 185–96 (2006)CrossRefGoogle Scholar
  8. S. Chung, R. Sudo, P.J. Mack, C.-R. Wan, V. Vickerman, R.D. Kamm, Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9, 269–75 (2009)CrossRefGoogle Scholar
  9. D.C. Darland, P.A. D’Amore, TGF beta is required for the formation of capillary-like structures in three-dimensional cocultures of 10 T1/2 and endothelial cells. Angiogenesis 4, 11–20 (2001)CrossRefGoogle Scholar
  10. Y. Du, D. Cropek, M.R.K. Mofrad, E.J. Weinberg, A. Khademhosseinil, J. Borenstein, in Microfluidics for biological applications, ed. by W.-C. Tian, E. Finehout (Springer, New York, 2008)Google Scholar
  11. A. Hasan, A. Memic, N. Annabi, M. Hossain, A. Paul, M.R. Dokmeci, F. Dehghani, A. Khademhosseini, Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 10, 11–25 (2014a)CrossRefGoogle Scholar
  12. A. Hasan, A. Paul, N.E. Vrana, X. Zhao, A. Memic, Y.-S. Hwang, M.R. Dokmeci, A. Khademhosseini, Microfluidic techniques for development of 3D vascularized tissue. Biomaterials 35, 7308–25 (2014b)CrossRefGoogle Scholar
  13. A. Hasan, K. Ragaert, W. Swieszkowski, S. Selimović, A. Paul, G. Camci-Unal, M.R.K. Mofrad, A. Khademhosseini, Biomechanical properties of native and tissue engineered heart valve constructs. J. Biomech. 47, 1949–63 (2014c)CrossRefGoogle Scholar
  14. A. Hasan, M. Nurunnabi, M. Morshed, A. Paul, A. Polini, T. Kuila, M. Al Hariri, Y-k. Lee, A.A. Jaffa, Recent advances in application of biosensors in tissue engineering. BioMed research international 2014, p. 18 (2014d)Google Scholar
  15. A. Hasan, A. Khattab, M.A. Islam, K.A. Hweij, J. Zeitouny, R. Waters, M. Sayegh, M. Hossain, A. Paul, Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv. Sci. (2015). doi: 10.1002/advs.201500122
  16. T. Kaully, K. Kaufman-Francis, A. Lesman, S. Levenberg, Vascularization - the conduit to viable engineered tissues. Tissue Eng. Part B Rev. 15, 159–69 (2009)CrossRefGoogle Scholar
  17. A. Khademhosseini, J. Yeh, G. Eng, J. Karp, H. Kaji, J. Borenstein, O.C. Farokhzad, R. Langer, Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays. Lab Chip 5, 1380–6 (2005)CrossRefGoogle Scholar
  18. A. Khademhosseini, J. Yeh, S. Jon, G. Eng, K.Y. Suh, J.A. Burdick, R. Langer, Molded polyethylene glycol microstructures for capturing cells within microfluidic channels. Lab Chip 4, 425–30 (2004)CrossRefGoogle Scholar
  19. J.E. Leslie-Barbick, J.J. Moon, J.L. West, Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels. J. Biomater. Sci. Polym. Ed. 20, 1763–79 (2009)CrossRefGoogle Scholar
  20. J.E. Leslie-Barbick, J.E. Saik, D.J. Gould, M.E. Dickinson, J.L. West, The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide. Biomaterials 32, 5782–9 (2011a)CrossRefGoogle Scholar
  21. J.E. Leslie-Barbick, C. Shen, C. Chen, J.L. West, Micron-scale spatially patterned, covalently immobilized vascular endothelial growth factor on hydrogels accelerates endothelial tubulogenesis and increases cellular angiogenic responses. Tissue Eng. Part A 17, 221–9 (2011b)CrossRefGoogle Scholar
  22. L.F. Mendes, R.P. Pirraco, W. Szymczyk, A.M. Frias, T.C. Santos, R.L. Reis, A.P. Marques, Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs. PLoS One 7, e41051 (2012)CrossRefGoogle Scholar
  23. J.S. Miller, K.R. Stevens, M.T. Yang, B.M. Baker, D.H.T. Nguyen, D.M. Cohen, E. Toro, A.A. Chen, P.A. Galie, X. Yu, R. Chaturvedi, S.N. Bhatia, C.S. Chen, Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768–74 (2012)CrossRefGoogle Scholar
  24. M.N. Nakatsu, R.C.A. Sainson, J.N. Aoto, K.L. Taylor, M. Aitkenhead, S. Pérez-del-Pulgar, P.M. Carpenter, C.C.W. Hughes, Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc. Res. 66, 102–12 (2003)CrossRefGoogle Scholar
  25. J.W. Nichol, S.T. Koshy, H. Bae, C.M. Hwang, S. Yamanlar, A. Khademhosseini, Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5536–44 (2010)CrossRefGoogle Scholar
  26. E.C. Novosel, C. Kleinhans, P.J. Kluger, Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63, 300–11 (2011)CrossRefGoogle Scholar
  27. A. Paul, A. Hasan, H.A. Kindi, A.K. Gaharwar, V.T.S. Rao, M. Nikkhah, S.R. Shin, D. Krafft, M.R. Dokmeci, D. Shum-Tim, A. Khademhosseini, Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8, 8050–62 (2014)CrossRefGoogle Scholar
  28. G.M. Price, K.H.K. Wong, J.G. Truslow, A.D. Leung, C. Acharya, J. Tien, Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31, 6182–9 (2010)CrossRefGoogle Scholar
  29. A. Ratcliffe, Tissue engineering of vascular grafts. Matrix Biol. 19, 353–7 (2000)CrossRefGoogle Scholar
  30. N. Sadr, M. Zhu, T. Osaki, T. Kakegawa, Y. Yang, M. Moretti, J. Fukuda, A. Khademhosseini, SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures. Biomaterials 32, 7479–90 (2011)CrossRefGoogle Scholar
  31. J.E. Saik, M.K. McHale, J.L. West, Biofunctional materials for directing vascular development. Curr. Vasc. Pharmacol. 10, 331–41 (2012)CrossRefGoogle Scholar
  32. A. Shamloo, S.C. Heilshorn, Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab Chip - Miniaturisation Chem. Biol. 10, 3061–8 (2010)CrossRefGoogle Scholar
  33. A. Shamloo, H. Xu, S. Heilshorn, Mechanisms of vascular endothelial growth factor-induced pathfinding by endothelial sprouts in biomaterials. Tissue Eng. Part A 18, 320–30 (2012)CrossRefGoogle Scholar
  34. R. Sudo, S. Chung, I.K. Zervantonakis, V. Vickerman, Y. Toshimitsu, L.G. Griffith, R.D. Kamm, Transport-mediated angiogenesis in 3D epithelial coculture. Faseb. J. 23, 2155–64 (2009)CrossRefGoogle Scholar
  35. J.V. Tu, C.L. Pashos, C.D. Naylor, E. Chen, S.-L. Normand, J.P. Newhouse, B.J. McNeil, Use of cardiac procedures and outcomes in elderly patients with myocardial infarction in the united states and Canada. N. Engl. J. Med. 336, 1500–5 (1997)CrossRefGoogle Scholar
  36. A.I. Van Den Bulcke, B. Bogdanov, N. De Rooze, E.H. Schacht, M. Cornelissen, H. Berghmans, Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1, 31–8 (2000)CrossRefGoogle Scholar
  37. K.H.K. Wong, J.G. Truslow, J. Tien, The role of cyclic AMP in normalizing the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31, 4706–14 (2010)CrossRefGoogle Scholar
  38. J.H. Yeon, H.R. Ryu, M. Chung, Q.P. Hu, N.L. Jeon, In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices. Lab Chip 12, 2815–22 (2012)CrossRefGoogle Scholar
  39. H. Yoshida, M. Matsusaki, M. Akashi, Multilayered blood capillary analogs in biodegradable hydrogels for in vitro drug permeability assays. Adv. Funct. Mater. 23, 1736–42 (2012)CrossRefGoogle Scholar
  40. W.W. Yuen, N.R. Du, C.H. Chan, E.A. Silva, D.J. Mooney, Mimicking nature by codelivery of stimulant and inhibitor to create temporally stable and spatially restricted angiogenic zones. Proc. Natl. Acad. Sci. U. S. A. 107, 17933–8 (2010)CrossRefGoogle Scholar
  41. Y. Zheng, J. Chen, M. Craven, N.W. Choi, S. Totorica, A. Diaz-Santana, P. Kermani, B. Hempstead, C. Fischbach-Teschl, J.A. López, A.D. Stroock, In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl. Acad. Sci. U. S. A. 109, 9342–7 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Biomedical Engineering, and Department of Mechanical Engineering, Faculty of Engineering and ArchitectureAmerican University of BeirutBeirutLebanon
  2. 2.Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s HospitalHarvard Medical SchoolCambridgeUSA
  3. 3.Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of Chemical and Petroleum EngineeringUniversity of KansasLawrenceUSA
  5. 5.Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonUSA
  6. 6.Center of NanotechnologyKing Abdulaziz UniversityJeddahSaudi Arabia
  7. 7.World Premier International – Advanced Institute for Materials Research (WPI-AIMR)Tohoku UniversitySendaiJapan
  8. 8.Department of PhysicsKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations