Biomedical Microdevices

, 17:86 | Cite as

Novel scalable and monolithically integrated extracorporeal gas exchange device

  • Tina Rieper
  • Claas MüllerEmail author
  • Holger Reinecke


A novel extracorporeal gas exchange device (EGED) is developed, implemented and characterized. The aim hereby is to overcome drawbacks of state-of-the-art devices and of state-of-science approaches, like their labor intensive fabrication and their low volume density of the gas exchange area, respectively. As a consequence of the stacked setup of alternating layers of the blood compartment and the ventilation gas compartment, the developed EGED allows for double sided gas exchange. Furthermore, it enables an adaption to the diversity of medical requirements by scaling the amount of layers. The developed fabrication chain is used to fabricate leakage-free evaluation models and allows for a transition to automated fabrication. The EGED is completely fabricated in polydimethylsiloxane (PDMS) and features diffusion membranes, which are separating the compartments, with a mean thickness of 90 μm. With the evaluation models and oxygen as ventilation gas an oxygen transfer of 60 ml/lblood (25 ml/(min m2)) and a carbon dioxide transfer of 70 ml/lblood (30 ml/(min m2)) are achieved. The linear scalability of the concept as well as the functionality of the EGED with air as ventilation gas is shown.


Extracorporeal gas exchange Silicone rubber processing Gas transfer simulation Large area bonding of microstructured PDMS sheets Microstructured, thin PDMS sheets 



The authors gratefully acknowledge the fruitful collaboration with Novalung GmbH, Heilbronn, Germany and their support by performing the gas exchange characterization experiments

Compliance with ethical standards

This study has been supported by Arbeitsgemeinschaft industerieller Forschungsvereinigungen “Otto von Guericke” e.V. (AiFKF2162012FO0). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


  1. O.K. Baskurt, Handbook of hemorheology and hemodynamics (Ios Press, Amsterdam, 2007)Google Scholar
  2. J. Brandrup, E.H. Immergut, E.A. Grulke, Polymer handbook, 4th edn. (Wiley, New York, 2004)Google Scholar
  3. J.D. Bronzino, The biomedical engineering handbook. The electrical engineering handbook series, 2nd edn. (CRC Press, Boca Raton, 2000)Google Scholar
  4. P.M. Bungay, H.K. Lonsdale, M.N. Pinho de. Synthetic membranes. Science, engineering and applications. NATO ASI series. Series C, Mathematical and physical sciences, v. 181. D. Reidel, Dordrecht, (1986)Google Scholar
  5. K.A. Burgess, H. Hu, W.R. Wagner, W.J. Federspiel, Biomed Microdevices (2009). doi: 10.1007/s10544-008-9215-2 Google Scholar
  6. C.G. Caro, T.J. Pedley, R. Schroter, W. Seed, The mechanics of the circulation. Oxford medical publications (Oxford University Press, Oxford, 1978)Google Scholar
  7. Charmilles Technologies. Technologieanleitung Robofil 2020SI, 4929 790 /D/ 10.1997, (1997)Google Scholar
  8. M.E. Cove, G. MacLaren, W.J. Federspiel, J.A. Kellum, Crit Care (2012). doi: 10.1186/cc11356 Google Scholar
  9. R.C. Eberhart, S.K. Dengle, R.M. Curtis, Artif Organs (1978). doi: 10.1111/j.1525-1594.1978.tb00999.x Google Scholar
  10. ELSO Extracorporeal Life Support Organization (2015) ECLS Registry Report. International Summary, January 2015. Accessed 12 January 2015
  11. G.W. Harris, F.C. Tompkins, R.P. deFilippi, J.H. Porter, M.J. Buckley, Development of capillary membrane blood oxygenators, in Blood oxygenation, ed. by D. Hershey (Springer US, Boston, 1970), pp. 334–354CrossRefGoogle Scholar
  12. S.C. Hillier, G. Krishna, E. Brasoveanu, Neonatal anesthesia. Semin Pediatr Surg 13(3), 142–151 (2004). doi: 10.1053/j.sempedsurg.2004.04.002 CrossRefGoogle Scholar
  13. D. Hoganson, J. Anderson, E. Weinberg, E. Swart, B. Orrick, J. Borenstein, J. Vacanti, J Thorac Cardiovasc Surg (2010). doi: 10.1016/j.jtcvs.2010.02.062 Google Scholar
  14. C.T. Kelley, Solving nonlinear equations with Newton's method (Society for Industrial and Applied Mathematics, Philadelphia, 2003)zbMATHCrossRefGoogle Scholar
  15. T. Kniazeva, J.C. Hsiao, J.L. Charest, J.T. Borenstein, Biomed Microdevices (2011). doi: 10.1007/s10544-010-9495-1 Google Scholar
  16. T. Kniazeva, A.A. Epshteyn, J.C. Hsiao, E.S. Kim, V.B. Kolachalama, J.L. Charest, J.T. Borenstein, Lab Chip (2012). doi: 10.1039/C2LC21156D Google Scholar
  17. J. Lee, M.C. Kung, H.H. Kung, L.F. Mockros, Microchannel technologies for artificial lungs: (3) open rectangular channels. ASAIO J 54(4), 390–395 (2008a). doi: 10.1097/MAT.0b013e31817eda02 CrossRefGoogle Scholar
  18. J.K. Lee, H.H. Kung, L.F. Mockros, Microchannel technologies for artificial lungs: (1) theory. ASAIO J 54(4), 372–382 (2008b). doi: 10.1097/MAT.0b013e31817ed9e1 CrossRefGoogle Scholar
  19. Maquet Cardiopulmonary AG. QUADROX-i Adult und Small Adult Brochure, (2012)Google Scholar
  20. J. Mazumdar, Biofluid mechanics (World Scientific, Singapore, 1992)zbMATHCrossRefGoogle Scholar
  21. Medos Medizintechnik AG. MEDOS Hilite 7000 LT Brochure. Oxygenator for Long-term Application, DE-003_2012_11, (2007)Google Scholar
  22. Medtronic Inc. Affinity NT Oxygenation System Brochure, (2011)Google Scholar
  23. Novalung GmbH. iLA Membranventilator. Handbuch für den klinischen Einsatz, DE-2009-01, (2009)Google Scholar
  24. M.L. Paden, S.A. Conrad, P.T. Rycus, R.R. Thiagarajan, ASAIO J (2013). doi: 10.1097/MAT.0b013e3182904a52 Google Scholar
  25. J.A. Potkay, M. Magnetta, A. Vinson, B. Cmolik, Lab Chip (2011). doi: 10.1039/c1lc20020h Google Scholar
  26. R. Margaria. Clin Chem. (11):745–762 (1963)Google Scholar
  27. T. Rieper, C. Mueller, B. Wehrstein, A.N. Maurer, H. Reinecke. in Proceedings of The Sixteenth International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2012). p. 1801, (2012)Google Scholar
  28. T. Rieper, P. Čvančara, S. Gast, B. Wehrstein, A.N. Maurer, C. Mueller, H. Reinecke. in Proceedings of The Sixteenth International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2013). p. 1188, (2013)Google Scholar
  29. T. Rieper, P. Čvančara, C. Müller, H. Reinecke, Microfluid Nanofluid (2014). doi: 10.1007/s10404-014-1389-8 Google Scholar
  30. N. Rochow, A. Manan, W. Wu, G. Fusch, S. Monkman, J. Leung, E. Chan, D. Nagpal, D. Predescu, J. Brash, P.R. Selvaganapathy, C. Fusch, Artif Organs (2014). doi: 10.1111/aor.12269 Google Scholar
  31. D.H. Schultz, V.L. Shah, W. Shay, P. Wang, Med Biol Eng Comput (1977). doi: 10.1007/BF02442952 Google Scholar
  32. R. Sillen, E. Swinkels, F. KleinSoetebier, M. Oostveen, J. Huinck, H. Bouwes, N. Bargman. in: Proceedings of the 5th Symposium on Microsystems in Practice, (2004)Google Scholar
  33. R. Skalak, N. Ozkaya, T.C. Skalak, Annu Rev Fluid Mech (1989). doi: 10.1146/annurev.fl.21.010189.001123 zbMATHGoogle Scholar
  34. W. Oczenski. Atmen—Atemhilfen. Atemphysiologie und Beatmungstechnik, 9., überarb. und erw. Aufl. Thieme, Stuttgart, New York, NY, (2012)Google Scholar
  35. W. Wu, N. Rochow, E. Chan, A. Manan, G. Fusch, Lab Chip (2013). doi: 10.1039/c3lc41417e Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratory for Process Technology, Department of Microsystems Engineering - IMTEKUniversity of FreiburgFreiburgGermany

Personalised recommendations