Biomedical Microdevices

, 17:69 | Cite as

The effect of AZD2171- or sTRAIL/Apo2L-loaded polylactic-co-glycolic acid microspheres on a subcutaneous glioblastoma model

  • Anna Shivinsky
  • Tomer Bronshtein
  • Tom Haber
  • Marcelle MachlufEmail author


Studies with AZD2171—a new anti-angiogenic inhibitor of tyrosine kinases associated with VEGF signaling—have shown great promise for treating glioblastoma. Unfortunately, AZD2171 success is limited by low permeability through the blood–brain barrier. Due to AZD2171’s short half-life and high toxicity, its local administration will require multiple intracranial procedures, making this approach clinically unfeasible. In this study, we investigated the potential of the highly hydrophobic AZD2171, released from modified polylactic-co-glycolic acid microspheres (PLGA-MS), to treat glioblastoma. To further demonstrate the versatile loading capacity of this system, the same PLGA formulation, which was found optimal for the loading and release of AZD2171, was tested with sTRAIL/Apo2L—a biologic drug that is very different than AZD2171 in its molecular weight, solubility, and charge. AZD2171 released from PLGA-MS was at least effective as the free drug in inhibiting endothelial growth and proliferation (in vitro), and, surprisingly, had a profound cytotoxic effect also towards in vitro cultured glioblastoma cell-lines (U87 and A172). Complete tumor inhibition was achieved following a single treatment with AZD2171-loaded PLGA-MS (6 mg/kg) administered locally adjacent to human U87 glioma tumors inoculated subcutaneously in nude mice. This improved effect, compared to other therapeutic approaches involving AZD2171, was shown to affect both tumor vasculature and the glioma cells. sTRAIL-loaded microspheres, administered at very low doses (0.3 mg/kg), led to 35 % inhibition of tumor growth in 2 weeks. Collectively, our results provide pre-clinical evidence for the potential of PLGA formulations of AZD2171 and sTRAIL to serve as an effective treatment for glioblastoma.


AZD2171 sTRAIL Brain/central nervous system cancers Controlled release Novel drug delivery systems PLGA microspheres 



A172 human glioblastoma cells were kindly provided by Prof. David Givol, Weizmann Institute of Science, Rehovot, Israel. bFGF was kindly donated by Prof. Gera Neufeld, Technion—Israel Institute of Technology, Haifa, Israel. The financial support of the Russell Berrie Nanotechnology Institute (RBNI) and The Lorry I. Lokey Center is thankfully acknowledged. The financial support and contribution of the Bert Richardson Foundation is greatly appreciated.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. All animal experiments were performed in compliance with the Ministry of Health’s guidelines for the care and use of laboratory animals (Ethics Committee approval No. IL-089-09-2006).


  1. M.S. Ahluwalia, 2010 Society for Neuro-Oncology Annual Meeting: a report of selected studies. Expert. Rev. Anticancer. Ther. 11(2), 161–163 (2011)CrossRefGoogle Scholar
  2. A. Arshady, Preparation of biodegradable microspheres and microcapsules: polyactides and related polyester. J. Control. Release 17, 1–21 (1991)CrossRefGoogle Scholar
  3. B. Auffinger, B. Thaci, P. Nigam, E. Rincon, Y. Cheng, M.S. Lesniak, New therapeutic approaches for malignant glioma: in search of the Rosetta stone. F1000 Med. Rep. 4, 18 (2012)CrossRefGoogle Scholar
  4. T.T. Batchelor, A.G. Sorensen, E. di Tomaso, W.T. Zhang, D.G. Duda, K.S. Cohen, K.R. Kozak, D.P. Cahill, P.J. Chen, M. Zhu, M. Ancukiewicz, M.M. Mrugala, S. Plotkin, J. Drappatz, D.N. Louis, P. Ivy, D.T. Scadden, T. Benner, J.S. Loeffler, P.Y. Wen, R.K. Jain, AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11(1), 83–95 (2007)CrossRefGoogle Scholar
  5. O. Benny, P. Pakneshan, Novel technologies for antiangiogenic drug delivery in the brain. Cell Adhes. Migr. 3(2), 224–229 (2009)CrossRefGoogle Scholar
  6. O. Benny, M. Duvshani-Eshet, T. Cargioli, L. Bello, A. Bikfalvi, R.S. Carroll, M. Machluf, Continuous delivery of endogenous inhibitors from poly(lactic-co-glycolic acid) polymeric microspheres inhibits glioma tumor growth. Clin. Cancer Res. 11(2 Pt 1), 768–776 (2005)Google Scholar
  7. O. Benny, S.K. Kim, K. Gvili, I.S. Radzishevsky, A. Mor, L. Verduzco, L.G. Menon, P.M. Black, M. Machluf, R.S. Carroll, In vivo fate and therapeutic efficacy of PF-4/CTF microspheres in an orthotopic human glioblastoma model. FASEB J. 22(2), 488–499 (2008)CrossRefGoogle Scholar
  8. O. Benny, L.G. Menon, G. Ariel, E. Goren, S.K. Kim, C. Stewman, P.M. Black, R.S. Carroll, M. Machluf, Local delivery of poly lactic-co-glycolic acid microspheres containing imatinib mesylate inhibits intracranial xenograft glioma growth. Clin. Cancer Res. 15(4), 1222–1231 (2009)CrossRefGoogle Scholar
  9. C. Berkland, M. King, A. Cox, K. Kim, D.W. Pack, Precise control of PLG microsphere size provides enhanced control of drug release rate. J. Control. Release 82(1), 137–147 (2002)CrossRefGoogle Scholar
  10. C. Berkland, K. Kim, D.W. Pack, PLG microsphere size controls drug release rate through several competing factors. Pharm. Res. 20(7), 1055–1062 (2003)CrossRefGoogle Scholar
  11. F. Cui, D. Cun, A. Tao, M. Yang, K. Shi, M. Zhao, Y. Guan, Preparation and characterization of melittin-loaded poly (DL-lactic acid) or poly (DL-lactic-co-glycolic acid) microspheres made by the double emulsion method. J. Control. Release 107(2), 310–319 (2005)CrossRefGoogle Scholar
  12. J.F. de Groot, G. Fuller, A.J. Kumar, Y. Piao, K. Eterovic, Y. Ji, C.A. Conrad, Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro. Oncol. 12(3), 233–242 (2010)CrossRefGoogle Scholar
  13. J. Dietrich, R. Han, Y. Yang, M. Mayer-Proschel, M. Noble, CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J. Biol. 5(7), 22 (2006)CrossRefGoogle Scholar
  14. J. Dietrich, M. Monje, J. Wefel, C. Meyers, Clinical patterns and biological correlates of cognitive dysfunction associated with cancer therapy. Oncologist 13(12), 1285–1295 (2008)CrossRefGoogle Scholar
  15. J. Dietrich, D. Wang, T.T. Batchelor, Cediranib: profile of a novel anti-angiogenic agent in patients with glioblastoma. Expert Opin. Investig. Drugs 18(10), 1549–1557 (2009)CrossRefGoogle Scholar
  16. R. Dillman, in Biological Therapy of Glioblastoma. Principles of Cancer Biotherapy, ed. by R. Oldham, R. Dillman (Springer, Netherlands, 2009), pp. 723–732CrossRefGoogle Scholar
  17. U. Edlund, A. Albertsson, Degradable polymer microspheres for controlled drug delivery. Adv. Polym. Sci. 157, 67–112 (2002)CrossRefGoogle Scholar
  18. F.A. Eskens, J. Verweij, The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur. J. Cancer 42(18), 3127–3139 (2006)CrossRefGoogle Scholar
  19. R. Francescone, S. Scully, B. Bentley, W. Yan, S.L. Taylor, D. Oh, L. Moral, R. Shao, Glioblastoma-derived tumor cells induce vasculogenic mimicry through Flk-1 protein activation. J. Biol. Chem. 287(29), 24821–24831 (2012)CrossRefGoogle Scholar
  20. F. Gomez-Rivera, A.A. Santillan-Gomez, M.N. Younes, S. Kim, D. Fooshee, M. Zhao, S.A. Jasser, J.N. Myers, The tyrosine kinase inhibitor, AZD2171, inhibits vascular endothelial growth factor receptor signaling and growth of anaplastic thyroid cancer in an orthotopic nude mouse model. Clin. Cancer Res. 13(15 Pt 1), 4519–4527 (2007)CrossRefGoogle Scholar
  21. C. Hagemann, J. Anacker, S. Haas, D. Riesner, B. Schomig, R.I. Ernestus, G.H. Vince, Comparative expression pattern of Matrix-Metalloproteinases in human glioblastoma cell-lines and primary cultures. BMC Res. Notes 3, 293 (2010)CrossRefGoogle Scholar
  22. X. Hong, F. Jiang, S.N. Kalkanis, Z.G. Zhang, X. Zhang, X. Zheng, T. Mikkelsen, H. Jiang, M. Chopp, Decrease of endogenous vascular endothelial growth factor may not affect glioma cell proliferation and invasion. J. Exp. Ther. Oncol. 6(3), 219–229 (2007)Google Scholar
  23. V.L. Jacobs, P.A. Valdes, W.F. Hickey, J.A. De Leo, Current review of in vivo GBM rodent models: emphasis on the CNS-1 tumour model. ASN Neuro 3(3), e00063 (2011)CrossRefGoogle Scholar
  24. T.H. Kim, H.H. Jiang, C.W. Park, Y.S. Youn, S. Lee, X. Chen, K.C. Lee, PEGylated TNF-related apoptosis-inducing ligand (TRAIL)-loaded sustained release PLGA microspheres for enhanced stability and antitumor activity. J. Control. Release 150(1), 63–69 (2011)CrossRefGoogle Scholar
  25. R. Lakomy, P. Burkon, D. Burkonova, R. Jancalek, New therapeutic options in therapy of glioblastoma multiforme. Klin. Onkol. 23(6), 381–387 (2010)Google Scholar
  26. Y. Liu, F. Lang, X. Xie, S. Prabhu, J. Xu, D. Sampath, K. Aldape, G. Fuller, V.K. Puduvalli, Efficacy of adenovirally expressed soluble TRAIL in human glioma organotypic slice culture and glioma xenografts. Cell Death Dis. 2, e121 (2011)CrossRefGoogle Scholar
  27. M.R. Lobo, S.C. Green, M.C. Schabel, G.Y. Gillespie, R.L. Woltjer, M.M. Pike, Quinacrine synergistically enhances the antivascular and antitumor efficacy of cediranib in intracranial mouse glioma. Neuro. Oncol. 15(12), 1673–1683 (2013)CrossRefGoogle Scholar
  28. S. Loges, T. Schmidt, P. Carmeliet, Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates. Genes Cancer 1(1), 12–25 (2010)CrossRefGoogle Scholar
  29. T.J. MacDonald, K.M. Brown, B. LaFleur, K. Peterson, C. Lawlor, Y. Chen, R.J. Packer, P. Cogen, D.A. Stephan, Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat. Genet. 29(2), 143–152 (2001a)CrossRefGoogle Scholar
  30. T.J. MacDonald, T. Taga, H. Shimada, P. Tabrizi, B.V. Zlokovic, D.A. Cheresh, W.E. Laug, Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist. Neurosurgery 48(1), 151–157 (2001b)Google Scholar
  31. J.M. Maris, J. Courtright, P.J. Houghton, C.L. Morton, R. Gorlick, E.A. Kolb, R. Lock, M. Tajbakhsh, C.P. Reynolds, S.T. Keir, J. Wu, M.A. Smith, Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatr. Blood Cancer 50(3), 581–587 (2008)CrossRefGoogle Scholar
  32. O. Martinho, R. Silva-Oliveira, V. Miranda-Goncalves, C. Clara, J.R. Almeida, A.L. Carvalho, J.T. Barata, R.M. Reis, In vitro and in vivo analysis of RTK inhibitor efficacy and identification of its novel targets in glioblastomas. Transl. Oncol. 6(2), 187–196 (2013)CrossRefGoogle Scholar
  33. L.G. Menon, K. Kelly, H.W. Yang, S.K. Kim, P.M. Black, R.S. Carroll, Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells 27(9), 2320–2330 (2009)CrossRefGoogle Scholar
  34. J.C. Olivier, Drug transport to brain with targeted nanoparticles. NeuroRx 2(1), 108–119 (2005)CrossRefGoogle Scholar
  35. M. Onishi, T. Ichikawa, K. Kurozumi, I. Date, Angiogenesis and invasion in glioma. Brain Tumor Pathol. 28(1), 13–24 (2011)CrossRefGoogle Scholar
  36. M. O’Reilly, Angiostatin: an endogenous inhibitor of angiogenesis and of tumor growth. EXS 79, 273–294 (1997)Google Scholar
  37. T.P. Padera, A.H. Kuo, T. Hoshida, S. Liao, J. Lobo, K.R. Kozak, D. Fukumura, R.K. Jain, Differential response of primary tumor versus lymphatic metastasis to VEGFR-2 and VEGFR-3 kinase inhibitors cediranib and vandetanib. Mol. Cancer Ther. 7(8), 2272–2279 (2008)CrossRefGoogle Scholar
  38. P. Perugini, I. Genta, B. Conti, T. Modena, F. Pavanetto, Long-term release of clodronate from biodegradable microspheres. AAPS PharmSciTech 2(3), E10 (2001)CrossRefGoogle Scholar
  39. J.M. Ruiz, J.P. Busnel, J.P. Benoit, Influence of average molecular weights of poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 on phase separation and in vitro drug release from microspheres. Pharm. Res. 7(9), 928–934 (1990)CrossRefGoogle Scholar
  40. A.J. Sawyer, J.M. Piepmeier, W.M. Saltzman, New methods for direct delivery of chemotherapy for treating brain tumors. Yale J. Biol. Med. 79(3-4), 141–152 (2006)Google Scholar
  41. P. Secchiero, A. Gonelli, E. Carnevale, F. Corallini, C. Rizzardi, S. Zacchigna, M. Melato, G. Zauli, Evidence for a proangiogenic activity of TNF-related apoptosis-inducing ligand. Neoplasia 6(4), 364–373 (2004)CrossRefGoogle Scholar
  42. K. Shah, C.H. Tung, X.O. Breakefield, R. Weissleder, In vivo imaging of S-TRAIL-mediated tumor regression and apoptosis. Mol. Ther. 11(6), 926–931 (2005)CrossRefGoogle Scholar
  43. D.W. Siemann, W.D. Brazelle, J.M. Jurgensmeier, The vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor cediranib (Recentin; AZD2171) inhibits endothelial cell function and growth of human renal tumor xenografts. Int. J. Radiat. Oncol. Biol. Phys. 73(3), 897–903 (2009)CrossRefGoogle Scholar
  44. N.R. Smith, N.H. James, I. Oakley, A. Wainwright, C. Copley, J. Kendrew, L.M. Womersley, J.M. Jurgensmeier, S.R. Wedge, S.T. Barry, Acute pharmacodynamic and antivascular effects of the vascular endothelial growth factor signaling inhibitor AZD2171 in Calu-6 human lung tumor xenografts. Mol. Cancer Ther. 6(8), 2198–2208 (2007)CrossRefGoogle Scholar
  45. R. Stupp, J.C. Tonn, M. Brada, G. Pentheroudakis, E.G.W. Group, High-grade malignant glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 21(Suppl 5), v190–v193 (2010)CrossRefGoogle Scholar
  46. E. Timotheadou, New agents targeting angiogenesis in glioblastoma. Chemother Res Pract 2011, 878912 (2011)Google Scholar
  47. N.E. Toledano Furman, Y. Lupu-Haber, T. Bronshtein, L. Kaneti, N. Letko, E. Weinstein, L. Baruch, M. Machluf, Reconstructed stem cell nanoghosts: a natural tumor targeting platform. Nano Lett. 13(7), 3248–3255 (2013)CrossRefGoogle Scholar
  48. T. Uchida, K. Yoshida, S. Goto, Preparation and characterization of polylactic acid microspheres containing water-soluble dyes using a novel w/o/w emulsion solvent evaporation method. J. Microencapsul. 13(2), 219–228 (1996)CrossRefGoogle Scholar
  49. M.M. Valter, O.D. Wiestler, T. Pietsche, Differential control of VEGF synthesis and secretion in human glioma cells by IL-1 and EGF. Int. J. Dev. Neurosci. 17(5-6), 565–577 (1999)CrossRefGoogle Scholar
  50. W.J. van Heeckeren, J. Ortiz, M.M. Cooney, S.C. Remick, Hypertension, proteinuria, and antagonism of vascular endothelial growth factor signaling: clinical toxicity, therapeutic target, or novel biomarker? J. Clin. Oncol. 25(21), 2993–2995 (2007)CrossRefGoogle Scholar
  51. G. Vilar, J. Tulla-Puche, F. Albericio, Polymers and drug delivery systems. Curr. Drug Deliv. 9(4), 367–394 (2012)CrossRefGoogle Scholar
  52. T. Wang, S. Agarwal, W.F. Elmquist, Brain distribution of cediranib is limited by active efflux at the blood-brain barrier. J. Pharmacol. Exp. Ther. 341(2), 386–395 (2012)CrossRefGoogle Scholar
  53. S.R. Wedge, J. Kendrew, L.F. Hennequin, P.J. Valentine, S.T. Barry, S.R. Brave, N.R. Smith, N.H. James, M. Dukes, J.O. Curwen, R. Chester, J.A. Jackson, S.J. Boffey, L.L. Kilburn, S. Barnett, G.H. Richmond, P.F. Wadsworth, M. Walker, A.L. Bigley, S.T. Taylor, L. Cooper, S. Beck, J.M. Jurgensmeier, D.J. Ogilvie, AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res. 65(10), 4389–4400 (2005)CrossRefGoogle Scholar
  54. W. Wick, M. Weller, M. Weiler, T. Batchelor, A.W. Yung, M. Platten, Pathway inhibition: emerging molecular targets for treating glioblastoma. Neuro. Oncol. 13(6), 566–579 (2011)CrossRefGoogle Scholar
  55. X.S. Wu, Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: part III. Drug delivery application. Artif. Cells Blood Substit. Immobil. Biotechnol. 32(4), 575–591 (2004)CrossRefGoogle Scholar
  56. X.S. Wu, N. Wang, Synthesis, charactarization, biodegradable lactic/glycolic acid polymer. J. Biomater. Sci. Polym. Ed. 12, 21–34 (2001)CrossRefGoogle Scholar
  57. K. Yonesaka, K. Zejnullahu, I. Okamoto, T. Satoh, F. Cappuzzo, J. Souglakos, D. Ercan, A. Rogers, M. Roncalli, M. Takeda, Y. Fujisaka, J. Philips, T. Shimizu, O. Maenishi, Y. Cho, J. Sun, A. Destro, K. Taira, K. Takeda, T. Okabe, J. Swanson, H. Itoh, M. Takada, E. Lifshits, K. Okuno, J.A. Engelman, R.A. Shivdasani, K. Nishio, M. Fukuoka, M. Varella-Garcia, K. Nakagawa, P.A. Janne, Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci. Transl. Med. 3(99), 99ra86 (2011)CrossRefGoogle Scholar
  58. H. Zhao, J. Gagnon, U.O. Hafeli, Process and formulation variables in the preparation of injectable and biodegradable magnetic microspheres. Biomagn. Res. Technol. 5, 2 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anna Shivinsky
    • 1
  • Tomer Bronshtein
    • 1
  • Tom Haber
    • 1
  • Marcelle Machluf
    • 1
    Email author
  1. 1.Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of Technology (IIT)HaifaIsrael

Personalised recommendations