A transfer function approach for predicting rare cell capture microdevice performance

Article

Abstract

Rare cells have the potential to improve our understanding of biological systems and the treatment of a variety of diseases; each of those applications requires a different balance of throughput, capture efficiency, and sample purity. Those challenges, coupled with the limited availability of patient samples and the costs of repeated design iterations, motivate the need for a robust set of engineering tools to optimize application-specific geometries. Here, we present a transfer function approach for predicting rare cell capture in microfluidic obstacle arrays. Existing computational fluid dynamics (CFD) tools are limited to simulating a subset of these arrays, owing to computational costs; a transfer function leverages the deterministic nature of cell transport in these arrays, extending limited CFD simulations into larger, more complicated geometries. We show that the transfer function approximation matches a full CFD simulation within 1.34 %, at a 74-fold reduction in computational cost. Taking advantage of these computational savings, we apply the transfer function simulations to simulate reversing array geometries that generate a “notch filter” effect, reducing the collision frequency of cells outside of a specified diameter range. We adapt the transfer function to study the effect of off-design boundary conditions (such as a clogged inlet in a microdevice) on overall performance. Finally, we have validated the transfer function’s predictions for lateral displacement within the array using particle tracking and polystyrene beads in a microdevice.

Keywords

Rare cell capture Circulating tumor cell CTC Transfer function Collision dynamics Cell capture Design optimization 

References

  1. W.J. Allard, J. Matera, M.C. Miller, M. Repollet, M.C. Connelly, C. Rao, A.G.J. Tibbe, J.W. Uhr, Terstappen LWMM Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10(20), 6897–904 (2004)CrossRefGoogle Scholar
  2. F.F. Becker, X.B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P.R. Gascoyne, Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci USA 92(3), 860–864 (1995)CrossRefGoogle Scholar
  3. G.I. Bell, M. Dembo, P. Bongrand, Cell adhesion. competition between nonspecific repulsion and specific bonding. Biophys J 45(6), 1051–1064 (1984)CrossRefGoogle Scholar
  4. A.A.S. Bhagat, H.W. Hou, L.D. Li, C.T. Lim, J. Han, Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11, 1870–1878 (2011)CrossRefGoogle Scholar
  5. D. Blair, E. Dufresne, MATLAB Particle Tracking Code http://site.physics.georgetown.edu/matlab/. Accessed 16 November 2014 (2007)
  6. M. Cristofanilli, G.T. Budd, M.J. Ellis, A. Stopeck, J. Matera, M.C. Miller, J.M. Reuben, G.V. Doyle, W.J. Allard, L.W. Terstappen, D.F. Hayes, Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8), 781–791 (2004)CrossRefGoogle Scholar
  7. J. Crocker, E. Weeks, Particle Tracking Using IDL http://www.physics.emory.edu/faculty/weeks//idl/. Accessed 16 November 2014 (1996)
  8. J. Davis, D. Inglis, K. Morton, D. Lawrence, L. Huang, S. Chou, J. Sturm, R. Austin, Deterministic hydrodynamics: Taking blood apart. Proc Natl Acad Sci USA 103(40), 14,779–14,784 (2006)CrossRefGoogle Scholar
  9. P. Decuzzi, M. Ferrari, The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27(30), 5307–5314 (2006)CrossRefGoogle Scholar
  10. M. Dembo, D.C. Torney, K. Saxman, D. Hammer, The reaction-limited kinetics of membrane-to-surface adhesion. Philos Trans R Soc London Biol 234(1274), 55–83 (1988)Google Scholar
  11. M.L. Dustin, L.M. Ferguson, P.Y. Chan, T.A. Springer, D.E. Golan, Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area. J Cell Biol 132(3), 465–74 (1996)CrossRefGoogle Scholar
  12. C.M. Earhart, C.E. Hughes, R.S. Gaster, C.C. Ooi, R.J. Wilson, L.Y. Zhou, E.W. Humke, L. Xu, D.J. Wong, S.B. Willingham, E.J. Schwartz, I.L. Weissman, S.S. Jeffrey, J.W. Neal, R. Rohatgi, H.A. Wakelee, S.X. Wang, Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips. Lab Chip 14, 78–88 (2014)CrossRefGoogle Scholar
  13. J.P. Gleghorn, E.D. Pratt, D. Denning, H. Liu, N.H. Bander, S.T. Tagawa, D.M. Nanus, P.A. Giannakakou, B.J. Kirby, Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip 10, 27–29 (2010)CrossRefGoogle Scholar
  14. J.P. Gleghorn, J.P. Smith, B.J. Kirby, Transport and collision dynamics in periodic asymmetric obstacle arrays, Rational design of microfluidic rare-cell immunocapture devices. Phys Rev E 88(032), 136 (2013)Google Scholar
  15. A. Hatch, G. Hansmann, S.K. Murthy, Engineered alginate hydrogels for effective microfluidic capture and release of endothelial progenitor cells from whole blood. Langmuir 27(7), 4257–4264 (2011)CrossRefGoogle Scholar
  16. D.F. Hayes, M. Cristofanilli, G.T. Budd, M.J. Ellis, A. Stopeck, M.C. Miller, J. Matera, W.J. Allard, G.V. Doyle, L.W. Terstappen, Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 12(14), 4218–4224 (2006)CrossRefGoogle Scholar
  17. C.H. Hsu, D. Di Carlo, C. Chen, D. Irimia, M. Toner, Microvortex for focusing guiding and sorting of particles. Lab Chip 8, 2128–2134 (2008)CrossRefGoogle Scholar
  18. C. Huang, J.P. Smith, T.N. Saha, A.D. Rhim, B. Kirby, Characterization of microfluidic shear-dependent epithelial cell adhesion molecule immunocapture and enrichment of pancreatic cancer cells from blood cells with dielectrophoresis. Biomicrofluidics 8(4), 044107 (2014)CrossRefGoogle Scholar
  19. D. Inglis, J. Davis, R. Austin, J. Sturm, Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 5, 655–658 (2006)CrossRefGoogle Scholar
  20. B.J. Kirby, M. Jodari, M.S. Loftus, G. Gakhar, E.D. Pratt, C. Chanel-Vos, J.P. Gleghorn, S.M. Santana, H. Liu, J.P. Smith, V.N. Navarro, S.T. Tagawa, N.H. Bander, D.M. Nanus, P. Giannakakou, Functional characterization of circulating tumor cells with a prostate-cancer-specific microfluidic device. PLoS ONE 7(4), e35,976 (2012)CrossRefGoogle Scholar
  21. R.T. Krivacic, A. Ladanyi, D.N. Curry, H.B. Hsieh, P. Kuhn, D.E. Bergsrud, J.F. Kepros, T. Barbera, M.Y. Ho, L.B. Chen, R.A. Lerner, R.H. Bruce, A rare-cell detector for cancer. Proc Natl Acad Sci USA 101(29), 10,501–10,504 (2004)CrossRefGoogle Scholar
  22. S.T. Ligthart, F.C. Bidard, C. Decraene, T. Bachelot, S. Delaloge, E. Brain, M. Campone, P. Viens, J.Y. Pierga, L.W.M.M. Terstappen, Unbiased quantitative assessment of her-2 expression of circulating tumor cells in patients with metastatic and non-metastatic breast cancer. Annals of Oncology 24(5), 1231–1238 (2013)CrossRefGoogle Scholar
  23. J.G. Lohr, V.A. Adalsteinsson, K. Cibulskis, A.D. Choudhury, M. Rosenberg, P. Cruz-Gordillo, J.M. Francis, C.Z. Zhang, A.K. Shalek, R. Satija, Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Natl Bio (2014)Google Scholar
  24. S. Maheswaran, D.A. Haber, Circulating tumor cells: a window into cancer biology and metastasis. Curr Opin Genet Dev 20(1), 96–99 (2010)CrossRefGoogle Scholar
  25. S. Maheswaran, L.V. Sequist, S. Nagrath, L. Ulkus, B. Brannigan, C.V. Collura, E. Inserra, S. Diederichs, A.J. Iafrate, D.W. Bell, S. Digumarthy, A. Muzikansky, D. Irimia, J. Settleman, R.G. Tompkins, T.J. Lynch, M. Toner, D.A. Haber, Detection of mutations in egfr in circulating lung-cancer cells. New England Journal of Medicine 359(4), 366–377 (2008). pMID: 18596266CrossRefGoogle Scholar
  26. H. Mohamed, J.N. Turner, M. Caggana, Biochip for separating fetal cells from maternal circulation. J Chromatogr A 1162(2), 187–192 (2007)CrossRefGoogle Scholar
  27. V. Murlidhar, M. Zeinali, S. Grabauskiene, M. Ghannad-Rezaie, M.S. Wicha, D.M. Simeone, Ramnath, R.M. Reddy, S. Nagrath, A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells. Small 10(23), 4895–4904 (2014)CrossRefGoogle Scholar
  28. S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M. Smith, E.L. Kwak, S. Digurmarthy, A. Muzikansky, P. Ryan, U. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Isolation of rare circulating tumor cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007)CrossRefGoogle Scholar
  29. N. Navin, J. Kendall, J. Troge, P. Andrews, L. Rodgers, J. McIndoo, K. Cook, A. Stepansky, D. Levy, D. Esposito, L. Muthuswamy, A. Krasnitz, W.R. McCombie, J. Hicks, M. Wigler, Tumour evolution inferred by single-cell sequencing. Nature 472(7341), 90–4 (2011)CrossRefGoogle Scholar
  30. A.A. Powell, A.H. Talasaz, H. Zhang, M.A. Coram, A. Reddy, G. Deng, M.L. Telli, R.H. Advani, R.W. Carlson, J.A. Mollick, S. Sheth, A.W. Kurian, J.M. Ford, F.E. Stockdale, S.R. Quake, R.F. Pease, M.N. Mindrinos, G. Bhanot, S.H. Dairkee, R.W. Davis, S.S. Jeffrey, Single cell profiling of circulating tumor cells, Transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS ONE 7(5), e33,788 (2012)CrossRefGoogle Scholar
  31. E.D. Pratt, C. Huang, B.G. Hawkins, J.P. Gleghorn, B.J. Kirby, Rare cell capture in microfluidic devices. Chem Eng Sci 66(7), 1508–1522 (2011)CrossRefGoogle Scholar
  32. E.D. Pratt, A. Stepansky, J. Hicks, B.J. Kirby, Single-cell copy number analysis of prostate cancer cells captured with geometrically enhanced differential immunocapture microdevices. Anal Chem 86(22):11 017, 013–11 (2014)Google Scholar
  33. E. Racila, D. Euhus, A.J. Weiss, C. Rao, J. McConnell, L.W. Terstappen, J.W. Uhr, Detection and characterization of carcinoma cells in the blood. Proc Natl Acad Sci USA 95(8), 4589–4594 (1998)CrossRefGoogle Scholar
  34. A.D. Rhim, F.I. Thege, S.M. Santana, T.B. Lannin, T.N. Saha, S. Tsai, L.R. Maggs, M.L. Kochman, G.G. Ginsberg, J.G. Lieb, V. Chandrasekhara, J.A. Drebin, N. Ahmad, Y. Yang, B.J. Kirby, B.Z. Stanger, Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology 146(3), 647–651 (2014)CrossRefGoogle Scholar
  35. H.G. Russnes, H.K.M. Vollan, O.C. Lingjaerde, A. Krasnitz, P. Lundin, B. Naume, T. Sørlie, E. Borgen, I.H. Rye, A. Langerød, S.F. Chin, A.E. Teschendorff, P.J. Stephens, S. Månér, E. Schlichting, L.O. Baumbusch, R. Kåresen, M.P. Stratton, M. Wigler, C. Caldas, A. Zetterberg, J. Hicks, A.L. Børresen-Dale, Genomic architecture characterizes tumor progression paths and fate in breast cancer patients Sci Trans Med 2(38), 38ra47 (2010)CrossRefGoogle Scholar
  36. S.M. Santana, H. Liu, N.H. Bander, J.P. Gleghorn, B.J. Kirby, Immunocapture of prostate cancer cells by use of anti-PSMA antibodies in microdevices. Biomed Microdev 14, 401–407 (2012)CrossRefGoogle Scholar
  37. S. Shim, K. Stemke-Hale, A.M. Tsimberidou, J. Noshari, T.E. Anderson, Gascoyne PRC. Antibody-independent isolation of circulating tumor cells by continuous-flow dielectrophoresis. Biomicrofluidics 7(1), 011807 (2013)CrossRefGoogle Scholar
  38. J.P. Smith, A.C. Barbati, S.M. Santana, J.P. Gleghorn, B.J. Kirby, Microfluidic transport in microdevices for rare cell capture. Electrophoresis 33(21), 3133–3142 (2012)CrossRefGoogle Scholar
  39. J.P. Smith, T.B. Lannin, Y.A. Syed, S.M. Santana, B.J. Kirby, Parametric control of collision rates and capture rates in geometrically enhanced differential immunocapture (GEDI) microfluidic devices for rare cell capture. Biomed Microdev 16(1), 143–151 (2014)CrossRefGoogle Scholar
  40. E. Sollier, D.E. Go, J. Che, D.R. Gossett, S. O’Byrne, W.M. Weaver, N. Kummer, M. Rettig, J. Goldman, N. Nickols, S. McCloskey, R.P. Kulkarni, D. Di Carlo, Size-selective collection of circulating tumor cells using vortex technology. Lab Chip 14, 63–77 (2014)CrossRefGoogle Scholar
  41. S.L. Stott, R.J. Lee, S. Nagrath, M. Yu, D.T. Miyamoto, L. Ulkus, E.J. Inserra, M. Ulman, S. Springer, Z. Nakamura, A.L. Moore, D.I. Tsukrov, M.E. Kempner, D.M. Dahl, C.L. Wu, A.J. Iafrate, M.R. Smith, R.G. Tompkins, L.V. Sequist, M. Toner, D.A. Haber, S. Maheswara, Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci Trans Med (2010)Google Scholar
  42. A.H. Talasaz, A.A. Powell, D.E. Huber, J.G. Berbee, K.H. Roh, W. Yu, W. Xiao, M.M. Davis, R.F. Pease, M.N. Mindrinos, S.S. Jeffrey, R.W. Davis, Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc Natl Acad Sci USA 106(10), 3970–3975 (2009)CrossRefGoogle Scholar
  43. F.I. Thege, T.N. Saha, S. Tsai, M.L. Kochman, M.A. Hollingsworth, A.D. Rhim, B.J. Kirby, Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: characterization, optimization and downstream analysis. Lab Chip 14, 1775–1784 (2014)CrossRefGoogle Scholar
  44. Y. Wan, J. Tan, W. Asghar, Yt. Kim, Y. Liu, S.M. Iqbal, Velocity effect on aptamer-based circulating tumor cell isolation in microfluidic devices. J Phys Chem B 115(47), 13,891–13,896 (2011)CrossRefGoogle Scholar
  45. M. Yu, A. Bardia, N. Aceto, F. Bersani, M.W. Madden, M.C. Donaldson, R. Desai, H. Zhu, V. Comaills, Z. Zheng, B.S. Wittner, P. Stojanov, E. Brachtel, D. Sgroi, R. Kapur, T. Shioda, D.T. Ting, S. Ramaswamy, G. Getz, A.J. Iafrate, C. Benes, M. Toner, S. Maheswaran, D.A. Haber, Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345(6193), 216–220 (2014)CrossRefGoogle Scholar
  46. B. Zhu, J.P. Smith, M.L. Yarmush, Y. Nahmias, B.J. Kirby, S.K. Murthy, Microfluidic enrichment of mouse epidermal stem cells and validation of stem cell proliferation in vitro (Tissue Eng C, 2013)Google Scholar
  47. B. Zhu, Y. Nahmias, M.L. Yarmush, S.K. Murthy, Microfluidic isolation of CD34-positive skin cells enables regeneration of hair and sebaceous glands in vivo (Stem Cells Trans Med, 2014)Google Scholar
  48. C. Zhu, G. Bao, N. Wang, Cell mechancis: Mechanical response, cell adhesion, and molecular deformation. Ann Rev Biomed Eng 2(1), 189 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA
  2. 2.Division of Hematology and Medical Oncology, Department of MedicineWeill Medical College of Cornell UniversityNew YorkUSA
  3. 3.Massachusetts Institute of Technology Lincoln LaboratoryLexingtonUSA

Personalised recommendations