Advertisement

Ultrananocrystalline diamond-CMOS device integration route for high acuity retinal prostheses

  • A. AhnoodEmail author
  • M. C. Escudie
  • R. Cicione
  • C. D. Abeyrathne
  • K. Ganesan
  • K. E. Fox
  • D. J. Garrett
  • A. Stacey
  • N. V. Apollo
  • S. G. Lichter
  • C. D. L. Thomas
  • N. Tran
  • H. Meffin
  • S. Prawer
Article

Abstract

High density electrodes are a new frontier for biomedical implants. Increasing the density and the number of electrodes used for the stimulation of retinal ganglion cells is one possible strategy for enhancing the quality of vision experienced by patients using retinal prostheses. The present work presents an integration strategy for a diamond based, high density, stimulating electrode array with a purpose built application specific integrated circuit (ASIC). The strategy is centered on flip-chip bonding of indium bumps to create high count and density vertical interconnects between the stimulator ASIC and an array of diamond neural stimulating electrodes. The use of polydimethylsiloxane (PDMS) housing prevents cross-contamination of the biocompatible diamond electrode with non-biocompatible materials, such as indium, used in the microfabrication process. Micro-imprint lithography allowed edge-to-edge micro-scale pattering of the indium bumps on non-coplanar substrates that have a form factor that can conform to body organs and thus are ideally suited for biomedical applications. Furthermore, micro-imprint lithography ensures the compatibility of lithography with the silicon ASIC and aluminum contact pads. Although this work focuses on 256 stimulating diamond electrode arrays with a pitch of 150 μm, the use of indium bump bonding technology and vertical interconnects facilitates implants with tens of thousands electrodes with a pitch as low as 10 μm, thus ensuring validity of the strategy for future high acuity retinal prostheses, and bionic implants in general.

Keywords

Microelectrode array Microelectrode array-CMOS integration High acuity retinal prostheses 3-Dimensional microfabrication 

Notes

Acknowledgments

This research was supported by the ARC through its Special Research Initiative (SRI) in Bionic Vision Science and Technology grant to Bionic Vision Australia (BVA). This work was performed in part at the NSW Node of the Australian National Fabrication Facility. NVA is supported by an MMI-CSIRO PhD scholarship.  

References

  1. P. Bajaj, D. Akin, A. Gupta, D. Sherman, B. Shi, O. Auciello, R. Bashir, Biomed. Microdevices 9, 787 (2007)CrossRefGoogle Scholar
  2. C.A. Curcio, K.A. Allen, J. Comp. Neurol. 300, 5 (1990)CrossRefGoogle Scholar
  3. N.C. Das, M. Taysing-Lara, K.A. Olver, F. Kiamilev, J.P. Prineas, J.T. Olesberg, E.J. Koerperick, L.M. Murray, T.F. Boggess, IEEE Trans. Electron. Packag. Manuf. 32, 9 (2009)CrossRefGoogle Scholar
  4. K. Ganesan, D.J. Garrett, A. Ahnood, M.N. Shivdasani, W. Tong, A.M. Turnley, K. Fox, H. Meffin, S. Prawer, Biomaterials 35, 908 (2014)CrossRefGoogle Scholar
  5. D.J. Garrett, K. Ganesan, A. Stacey, K. Fox, H. Meffin, S. Prawer, J. Neural Eng. 9, 016002 (2012)CrossRefGoogle Scholar
  6. R.A. Green, N.H. Lovell, G.G. Wallace, L.A. Poole-Warren, Biomaterials 29, 3393 (2008)CrossRefGoogle Scholar
  7. T. Guenther, C.W.D. Dodds, N.H. Lovell, G.J. Suaning in 2011 Annu. Int. Conf. Ieee Eng. Med. Biol. Soc. 6717–6720 (2011)Google Scholar
  8. T. Guenther, N.H. Lovell, G.J. Suaning, Expert. Rev. Med. Dev. 9, 33 (2012)CrossRefGoogle Scholar
  9. A.E. Hadjinicolaou, R.T. Leung, D.J. Garrett, K. Ganesan, K. Fox, D.A.X. Nayagam, M.N. Shivdasani, H. Meffin, M.R. Ibbotson, S. Prawer, B.J. O’Brien, Biomaterials 33, 5812 (2012)CrossRefGoogle Scholar
  10. H. Hämmerle, K. Kobuch, K. Kohler, W. Nisch, H. Sachs, M. Stelzle, Biomaterials 23, 797 (2002)CrossRefGoogle Scholar
  11. J. John, L. Zimmermann, P. D. Moor, C. V. Hoof, Nucl. Instruments Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 531, 202 (2004)Google Scholar
  12. Y.S. Kim, K.Y. Suh, H.H. Lee, Appl. Phys. Lett. 79, 2285 (2001)CrossRefGoogle Scholar
  13. M. Laroussi, F. Leipold, Int. J. Mass Spectrom. 233, 81 (2004)CrossRefGoogle Scholar
  14. W. Lin, Y.C. Lee, IEEE Trans. Adv. Packag. 22, 592 (1999)CrossRefGoogle Scholar
  15. N.L. Opie, L.N. Ayton, N.V. Apollo, K. Ganesan, R.H. Guymer, C.D. Luu, Artif. Organs 38, E82 (2014)CrossRefGoogle Scholar
  16. P.J.Love, A.W. Hoffman, D.J. Gulbransen, M.P. Murray, K.J. Ando, N.J. Therrien, J.P. Rosbeck, R.S. Holcombe, 134–143 (2004).Google Scholar
  17. J.D. Plessis, W.J. Pugh, A. Judefeind, J. Hadgraft, Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 15, 63 (2002)Google Scholar
  18. A. Santos, M.S. Humayun, E. de Juan Jr. et al., Arch. Ophthalmol. 115, 511 (1997)CrossRefGoogle Scholar
  19. C. Sekirnjak, P. Hottowy, A. Sher, W. Dabrowski, A.M. Litke, E.J. Chichilnisky, J. Neurosci. 28, 4446 (2008)CrossRefGoogle Scholar
  20. W. Tong, K. Fox, K. Ganesan, A.M. Turnley, O. Shimoni, P.A. Tran, A. Lohrmann, T. McFarlane, A. Ahnood, D.J. Garrett, H. Meffin, N.M. O’Brien-Simpson, E.C. Reynolds, S. Prawer, Mater. Sci. Eng. C 43, 135 (2014)CrossRefGoogle Scholar
  21. N. Tran, S. Bai, J. Yang, H. Chun, O. Kavehei, Y. Yang, V. Muktamath, D. Ng, H. Meffin, M. Halpern, E. Skafidas, IEEE J. Solid-State Circuits 49, 751 (2014)CrossRefGoogle Scholar
  22. Z. Zhang, C.P. Wong, IEEE Trans. Adv. Packag. 27, 515 (2004)CrossRefGoogle Scholar
  23. D. Zhou, and E. Greenbaum, Implantable neural prostheses 2: techniques and engineering approaches (Springer Science & Business Media, 2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. Ahnood
    • 1
    Email author
  • M. C. Escudie
    • 1
  • R. Cicione
    • 1
  • C. D. Abeyrathne
    • 1
    • 2
  • K. Ganesan
    • 1
  • K. E. Fox
    • 1
    • 3
  • D. J. Garrett
    • 1
    • 4
  • A. Stacey
    • 1
  • N. V. Apollo
    • 1
    • 4
  • S. G. Lichter
    • 1
  • C. D. L. Thomas
    • 5
  • N. Tran
    • 2
  • H. Meffin
    • 6
  • S. Prawer
    • 1
  1. 1.School of PhysicsUniversity of MelbourneParkvilleAustralia
  2. 2.Centre for Neural Engineering, Melbourne School of EngineeringThe University of MelbourneParkvilleAustralia
  3. 3.School of Aerospace, Mechanical and Manufacturing EngineeringRMIT UniversityCarltonAustralia
  4. 4.The Bionics InstituteMelbourneAustralia
  5. 5.Melbourne Dental SchoolUniversity of MelbourneParkvilleAustralia
  6. 6.National Vision Research Institute, Australian College of Optometry, Centre for Integrative Brain Function, Department of Optometry and Vision ScienceUniversity of MelbourneParkvilleAustralia

Personalised recommendations