Advertisement

Biomedical Microdevices

, 17:20 | Cite as

Biocompatibility of Tygon® tubing in microfluidic cell culture

  • Xiao Jiang
  • Rex E. Jeffries
  • Miguel A. Acosta
  • Andrey P. Tikunov
  • Jeffrey M. Macdonald
  • Glenn M. Walker
  • Michael P. GamcsikEmail author
Article

Abstract

Growth of the MDA-MB-231 breast cancer cell line in microfluidic channels was inhibited when culture media was delivered to the channels via microbore Tygon® tubing. Culture media incubated within this tubing also inhibited growth of these cells in conventional 96-well plates. These detrimental effects were not due to depletion of critical nutrients due to adsorption of media components onto the tubing surface. A pH change was also ruled out as a cause. Nuclear magnetic resonance spectroscopy of the cell growth media before and after incubation in the tubing confirmed no detectable loss of media components but did detect the presence of additional unidentified signals in the aliphatic region of the spectrum. These results indicate leaching of a chemical species from microbore Tygon® tubing that can affect cell growth in microfluidic devices.

Keywords

Biomaterial Cancer cell Biocompatibility Toxicity Polyvinylchloride Spectroscopy 

Notes

Acknowledgments

This work was supported by National Institutes of Health grant CA167471. NMR data was collected at the Hamner-UNC Metabolomics Facility of the Hamner Institutes for Health Sciences, Research Triangle Park, NC.

The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. E. Berthier, E.W. Young, D. Beebe, Lab Chip 12, 1224 (2012)CrossRefGoogle Scholar
  2. E. Cimetta, C. Cannizzaro, R. James, T. Biechele, R.T. Moon, N. Elvassore, G. Vunjak-Novakovic, Lab Chip 10, 3277 (2010)CrossRefGoogle Scholar
  3. G.A. Cooksey, J.T. Elliot, A.L. Plant, Anal. Chem. 83, 3890 (2011)CrossRefGoogle Scholar
  4. P.J. Hung, P.J. Lee, P. Sabounchi, N. Aghdam, R. Lin, L.P. Lee, Lab Chip 5, 44 (2005)CrossRefGoogle Scholar
  5. L. Kim, M.D. Vahey, H.Y. Lee, J. Voldman, Lab Chip 6, 394 (2006)CrossRefGoogle Scholar
  6. L. Kim, Y.C. Toh, J. Voldman, H. Yu, Lab Chip 7, 681 (2007)CrossRefGoogle Scholar
  7. T. Kim, M. Pinelis, M.M. Maharbiz, Biomed. Microdevices 11, 65 (2009)CrossRefGoogle Scholar
  8. M. Kolnik, L.S. Tsimring, J. Hasty, Lab Chip 12, 4732 (2012)CrossRefGoogle Scholar
  9. E. Leclerc, Y. Sakai, T. Fujii, Biomed. Microdevices 5, 109 (2003)CrossRefGoogle Scholar
  10. J.N. Lee, C. Park, G.M. Whitesides, Anal. Chem. 75, 6544 (2003)CrossRefGoogle Scholar
  11. N.M. Price, P.J. Harrison, M.R. Landry, F. Azam, K.J.F. Hall, Mar. Ecol. Prog. Ser. 34, 41 (1986)CrossRefGoogle Scholar
  12. M.W. Toepke, D.J. Beebe, Lab Chip 6, 1484 (2006)CrossRefGoogle Scholar
  13. G.M. Walker, N. Monteiro-Riviere, J. Rouse, A.T. O’Neill, Lab Chip 7, 226 (2007)CrossRefGoogle Scholar
  14. J. Zhou, K. Ren, W. Dai, Y. Zhao, D. Ryan, H. Wu, Lab Chip 11, 2288 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xiao Jiang
    • 1
  • Rex E. Jeffries
    • 1
  • Miguel A. Acosta
    • 1
  • Andrey P. Tikunov
    • 1
  • Jeffrey M. Macdonald
    • 1
  • Glenn M. Walker
    • 1
  • Michael P. Gamcsik
    • 1
    Email author
  1. 1.UNC/NCSU Joint Department of Biomedical EngineeringRaleighUSA

Personalised recommendations