Biomedical Microdevices

, 17:30 | Cite as

Confinement dependent chemotaxis in two-photon polymerized linear migration constructs with highly definable concentration gradients

  • Gertrud Malene Hjortø
  • Mark Holm Olsen
  • Inge Marie Svane
  • Niels B. Larsen


Dendritic cell chemotaxis is known to follow chemoattractant concentration gradients through tissue of heterogeneous pore sizes, but the dependence of migration velocity on pore size and gradient steepness is not fully understood. We enabled chemotaxis studies for at least 42 hours at confinements relevant to tissue models by two-photon polymerization of linear channel constructs with cross-sections from 10 × 10 μm2 to 20 × 20 μm2 inside commercially available chemotaxis analysis chips. Faster directed migration was observed with decreasing channel dimensions despite substantial cell deformation in the narrower channels. Finite element modeling of a cell either partly or fully obstructing chemokine diffusion in the narrow channels revealed strong local accentuation of the chemokine concentration gradients. The modeled concentration differences across a cell correlated well with the observed velocity dependence on channel cross-section. However, added effects due to spatial confinement could not be excluded. The design freedom offered by two-photon polymerization was exploited to minimize the accentuated concentration gradients in cell-blocked channels by introducing “venting slits” to the surrounding medium at a length scale too small (≤500 nm) for the cells to explore, thereby decoupling effects of concentration gradients and spatial confinement. Studies in slitted 10 × 10 μm2 channels showed significantly reduced migration speeds indistinguishable from speeds observed in unslitted 20 × 20 μm2 channel. This result agrees with model predictions of very small concentration gradient variations in slitted channels, thus indicating a strong influence of the concentration gradient steepness, not the channel size, on the directed migration velocity.


Two-photon polymerization Microchannels Chemotaxis Dendritic cells Chemokine Finite element modeling 



We thank Dr. Esben Kjær Unmack Larsen for assistance with photochemical modification of chip surfaces with PEGDA. We acknowledge financial support from the Danish Council for Independent Research, Technology and Production Sciences, grant# 09-070021.

Supplementary material

10544_2015_9937_MOESM1_ESM.avi (7.2 mb)
ESM 1 (AVI 7403 kb)
10544_2015_9937_MOESM2_ESM.avi (4.4 mb)
ESM 2 (AVI 4463 kb)
10544_2015_9937_MOESM3_ESM.avi (7 mb)
ESM 3 (AVI 7209 kb)
10544_2015_9937_MOESM4_ESM.avi (5.9 mb)
ESM 4 (AVI 6049 kb)


  1. A. Aman, T. Piotrowski, Dev Biol 341, 20 (2010)CrossRefGoogle Scholar
  2. V. Ambravaneswaran, I.Y. Wong, A.J. Aranyosi, M. Toner, D. Irimia, Integr Biol (Camb) 2, 639 (2010)CrossRefGoogle Scholar
  3. G. Faure-Andre, P. Vargas, M. Yuseff, M. Heuze, J. Diaz, D. Lankar, V. Steri, J. Manry, S. Hugues, F. Vascotto, J. Boulanger, G. Raposo, M. Bono, M. Rosemblatt, M. Piel, A. Lennon-Dumenil, Science 322, 1705 (2008)CrossRefGoogle Scholar
  4. R.N. Germain, E.A. Robey, M.D. Cahalan, Science 336, 1676 (2012)CrossRefGoogle Scholar
  5. U. Haessler, M. Pisano, M. Wu, M.A. Swartz, Proc Natl Acad Sci U S A 108, 5614 (2011)CrossRefGoogle Scholar
  6. A. Hill, J Physiol 40, 4 (1910)Google Scholar
  7. D. Irimia, G. Charras, N. Agrawal, T. Mitchison, M. Toner, Lab Chip 7, 1783 (2007)CrossRefGoogle Scholar
  8. J. Jacobelli, R.S. Friedman, M.A. Conti, A. Lennon-Dumenil, M. Piel, C.M. Sorensen, R.S. Adelstein, M.F. Krummel, Nat Immunol 11, 953 (2010)CrossRefGoogle Scholar
  9. H. Jonuleit, U. Kühn, G. Müller, K. Steinbrink, L. Paragnik, E. Schmitt, J. Knop, A.H. Enk, Eur J Immunol 27, 3135 (1997)CrossRefGoogle Scholar
  10. T. Laemmermann, B.L. Bader, S.J. Monkley, T. Worbs, R. Wedlich-Soeldner, K. Hirsch, M. Keller, R. Foerster, D.R. Critchley, R. Faessler, M. Sixt, Nature 453, 51 (2008)CrossRefGoogle Scholar
  11. C.N. LaFratta, J.T. Fourkas, T. Baldacchini, R.A. Farrer, Angew Chem Int Ed 46, 6238 (2007)CrossRefGoogle Scholar
  12. N. Li, M. Schwartz, C. Ionescu-Zanetti, J Biomol Screen 14, 194 (2009)CrossRefGoogle Scholar
  13. C. Miller, Proc R Soc Lond A 106, 724 (1924)CrossRefGoogle Scholar
  14. A. Ogston, B. Preston, J. Wells, Proc R Soc Lond A 333, 297 (1973)CrossRefGoogle Scholar
  15. M.H. Olsen, G.M. Hjorto, M. Hansen, O. Met, I.M. Svane, N.B. Larsen, Lab Chip 13, 4800 (2013)CrossRefGoogle Scholar
  16. W.S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA. (1997–2012),
  17. P.J. Sarvaiya, D. Guo, I. Ulasov, P. Gabikian, M.S. Lesniak, Oncotarget 4, 2171 (2013)Google Scholar
  18. P. Thevenaz, U.E. Ruttimann, M. Unser, IEEE Trans Image Process 7, 27 (1998)CrossRefGoogle Scholar
  19. Y. Wang, D.J. Irvine, Integr Biol (Camb) 5, 481 (2013)CrossRefGoogle Scholar
  20. M. Weber, R. Hauschild, J. Schwarz, C. Moussion, I. de Vries, D.F. Legler, S.A. Luther, T. Bollenbach, M. Sixt, Science 339, 328 (2013)CrossRefGoogle Scholar
  21. B. Welch, Biometrika 34, 28 (1947)zbMATHMathSciNetGoogle Scholar
  22. K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A.L. Willis, R.M. Hoffman, C.G. Figdor, S.J. Weiss, P. Friedl, J Cell Biol 201, 1069 (2013)CrossRefGoogle Scholar
  23. K. Wolf, S. Alexander, V. Schacht, L.M. Coussens, U.H. von Andrian, J. van Rheenen, E. Deryugina, P. Friedl, Semin Cell Dev Biol 20, 931 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Gertrud Malene Hjortø
    • 1
    • 3
  • Mark Holm Olsen
    • 1
  • Inge Marie Svane
    • 2
  • Niels B. Larsen
    • 1
  1. 1.Department of Micro- and NanotechnologyTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Department of Haematology and Oncology, Center for Cancer Immune Therapy (CCIT)Copenhagen University Hospital at HerlevHerlevDenmark
  3. 3.Department of Neuroscience and PharmacologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations