Biomedical Microdevices

, 17:7 | Cite as

Wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible biomedical platform

  • Jimin Maeng
  • Chuizhou Meng
  • Pedro P. Irazoqui


We present wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible parylene platform, as progress toward sustainably powering biomedical microsystems suitable for implantable and wearable applications. All-solid-state, low-profile (<30 μm), and high-density (up to ~500 μF/mm2) micro-supercapacitors are formed on an ultrathin (~20 μm) freestanding parylene film by a wafer-scale parylene packaging process in combination with a polyaniline (PANI) nanowire growth technique assisted by surface plasma treatment. These micro-supercapacitors are highly flexible and shown to be resilient toward flexural stress. Further, direct integration of micro-supercapacitors into a radio frequency (RF) rectifying circuit is achieved on a single parylene platform, yielding a complete RF energy harvesting microsystem. The system discharging rate is shown to improve by ~17 times in the presence of the integrated micro-supercapacitors. This result suggests that the integrated micro-supercapacitor technology described herein is a promising strategy for sustainably powering biomedical microsystems dedicated to implantable and wearable applications.


Energy storage Flexible Implantable devices Micro-supercapacitors Wafer-scale integration 



This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) MTO under the auspices of Dr. Jack Judy through the Space and Naval Warfare Systems Center, Pacific Grant/Contract No. N66001-11-1-4029. The authors thank Rebecca A. Bercich for proofreading the manuscript.


  1. H. An, Y. Wang, X. Wang, L. Zheng, X. Wang, L. Yi, L. Bai, X. Zhang, J. Power Sources 195, 6964 (2010)CrossRefGoogle Scholar
  2. M. Beidaghi, C. Wang, Adv. Funct. Mater. 22, 4501 (2012)CrossRefGoogle Scholar
  3. J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Science 328, 480 (2010)CrossRefGoogle Scholar
  4. H. Durou, D. Pech, D. Colin, P. Simon, P.L. Taberna, M. Brunet, Microsyst. Technol. 18, 467 (2012)CrossRefGoogle Scholar
  5. M.F. El-Kady, R.B. Kaner, Nat. Commun. 4, 1475 (2013)CrossRefGoogle Scholar
  6. V. Gupta, N. Miura, Electrochem. Solid State Lett 8, A630 (2005)CrossRefGoogle Scholar
  7. N.T. Kemp, J.W. Cochrane, R. Newbury, Nanotechnology 18, 145610 (2007)CrossRefGoogle Scholar
  8. G.R. Li, Z.P. Feng, J.H. Zhong, J.L. Wang, Y.X. Tong, Macromolecules 43, 2178 (2010)CrossRefGoogle Scholar
  9. C. Liu, K. Hayashi, K. Toko, Electrochem. Commun. 12, 36 (2010)CrossRefGoogle Scholar
  10. J. Maeng, B. Kim, D. Ha, W.J. Chappell, IEEE Trans. Microw. Theroy Tech. 59, 3410 (2011)CrossRefGoogle Scholar
  11. C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Nano Lett. 10, 4025 (2010)CrossRefGoogle Scholar
  12. C. Meng, O.Z. Gall, P.P. Irazoqui, Biomed. Microdevices 15, 973 (2013)CrossRefGoogle Scholar
  13. C. Meng, J. Maeng, S.W.M. John, P.P. Irazoqui, Adv. Energy Mater. 4, 1301269 (2014)CrossRefGoogle Scholar
  14. S.H. Mujarwar, S.B. Ambade, T. Battumur, R.B. Ambade, S.H. Lee, Electrochim. Acta 56, 4462 (2011)CrossRefGoogle Scholar
  15. Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, X. Chen, Adv. Mater. 25, 4035 (2013)CrossRefGoogle Scholar
  16. D. Pech, M. Brunet, H. Durou, P.H. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Nat. Nanotechnol. 5, 651 (2010)CrossRefGoogle Scholar
  17. G.A. Salvatore, N. Münzenrieder, T. Kinkeldei, L. Petti, C. Zysset, I. Strebel, L. Büthe, G. Tröster, Nat. Commun. 5, 2982 (2014)CrossRefGoogle Scholar
  18. R.K. Sharma, A.C. Rastogi, S.B. Desu, Electrochim. Acta 53, 7690 (2008)CrossRefGoogle Scholar
  19. C. Shen, X. Wang, W. Zhang, F. Kang, J. Power Sources 196, 10465 (2011)CrossRefGoogle Scholar
  20. W. Si, C. Yan, Y. Chen, S. Oswald, L. Han, O.G. Schmidt, Energy Environ. Sci. 6, 3218 (2013)CrossRefGoogle Scholar
  21. Y.T. Tan, F. Ran, L.R. Wang, L.B. Kong, L. Kang, J. Appl. Polym. Sci. 127, 1544 (2013)CrossRefGoogle Scholar
  22. Y.G. Wang, H.Q. Li, Y.Y. Xia, Adv. Mater. 18, 2619 (2006)CrossRefGoogle Scholar
  23. J. Wang, Y. Xu, X. Chen, X. Du, J. Power Sources 163, 1120 (2007)CrossRefGoogle Scholar
  24. K. Wang, J. Huang, Z. Wei, J. Phys. Chem. C 114, 8062 (2010)CrossRefGoogle Scholar
  25. K. Wang, W. Zou, B. Quan, A. Yu, H. Wu, P. Jiang, Z. Wei, Adv. Energy Mater. 1, 1068 (2011)CrossRefGoogle Scholar
  26. S. Xiong, F. Yang, H. Jiang, J. Ma, X. Lu, Electrochim. Acta 85, 235 (2012)CrossRefGoogle Scholar
  27. L. Yuan, X.H. Lu, T. Zhai, J. Dai, F. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, C. Hu, Y. Tong, J. Zhou, Z.L. Wang, ACS Nano 6, 656 (2012)CrossRefGoogle Scholar
  28. J. Zang, S.J. Bao, C.M. Li, H. Bian, X. Cui, Q. Bao, C.Q. Sun, J. Guo, K. Lian, J. Phys. Chem. C 112, 14843 (2008)CrossRefGoogle Scholar
  29. H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Electrochem. Commun. 10, 1056 (2008)CrossRefGoogle Scholar
  30. Y.G. Zhu, Y. Wang, Y. Shi, J.I. Wong, H.Y. Yang, Nano Energy 3, 46 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jimin Maeng
    • 1
  • Chuizhou Meng
    • 1
  • Pedro P. Irazoqui
    • 1
  1. 1.Center for Implantable Devices, Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations