Advertisement

Biomedical Microdevices

, 17:36 | Cite as

3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients

  • Ken-ichiro Kamei
  • Yasumasa Mashimo
  • Yoshie Koyama
  • Christopher Fockenberg
  • Miyuki Nakashima
  • Minako Nakajima
  • Junjun Li
  • Yong Chen
Article

Abstract

Three-dimensional (3D) printing is advantageous over conventional technologies for the fabrication of sophisticated structures such as 3D micro-channels for future applications in tissue engineering and drug screening. We aimed to apply this technology to cell-based assays using polydimethylsiloxane (PDMS), the most commonly used material for fabrication of micro-channels used for cell culture experiments. Useful properties of PDMS include biocompatibility, gas permeability and transparency. We developed a simple and robust protocol to generate PDMS-based devices using a soft lithography mold produced by 3D printing. 3D chemical gradients were then generated to stimulate cells confined to a micro-channel. We demonstrate that concentration gradients of growth factors, important regulators of cell/tissue functions in vivo, influence the survival and growth of human embryonic stem cells. Thus, this approach for generation of 3D concentration gradients could have strong implications for tissue engineering and drug screening.

Keywords

3D printing Microfluidics Polydimethylsiloxane Human embryonic stem cell Concentration gradient 

Notes

Acknowledgments

Funding was generously provided by the Japan Society for the Promotion of Science (JSPS): Young Scientists (A) (to K.K.; 23681028) and Challenging Exploratory Research (to K.K.; 26560209); funding was also provided by Terumo Life Science Foundation. The WPI-iCeMS is supported by the World Premier International Research Centre Initiative (WPI), the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Competing financial interests

K. K. and Y. C. are listed as co-inventors on the Japanese provisional patent application based on this research. The remaining authors declare no competing financial interests.

Supplementary material

10544_2015_9928_MOESM1_ESM.docx (17.2 mb)
ESM 1 (DOCX 17564 kb)
ESM 2

(MOV 676 kb)

ESM 3

(MOV 614 kb)

ESM 4

(MOV 1563 kb)

ESM 5

(MOV 1304 kb)

References

  1. E. Berthier, D.J. Beebe, Lab Chip 14, 3241 (2014)Google Scholar
  2. P. Carmeliet, R.K. Jain, Nature 407, 6801 (2000)CrossRefGoogle Scholar
  3. J. Condeelis, R.H. Singer, J.E. Segall, Annu. Rev. Cell Dev. Biol. 21, 695 (2005)Google Scholar
  4. E. Cukierman, K.E. Sung, X. Su, E. Berthier, C. Pehlke, A. Friedl, D.J. Beebe, PLoS One 10, e76373 (2013)Google Scholar
  5. J. El-Ali, P.K. Sorger, K.F. Jensen, Nature 442, 7101 (2006)CrossRefGoogle Scholar
  6. D.S. Eom, S. Amarnath, J.L. Fogel, S. Agarwala, Development 138, 15 (2011)CrossRefGoogle Scholar
  7. J.L. Erkal, A. Selimovic, B.C. Gross, S.Y. Lockwood, E.L. Walton, S. McNamara, R.S. Martin, D.M. Spence, Lab Chip 14, 12 (2014)CrossRefGoogle Scholar
  8. K.M. Fosen, S.R. Thom, Antioxid Redox Signaling 21, 1634 (2014)Google Scholar
  9. U. Haessler, Y. Kalinin, M.A. Swartz, M. Wu, Biomed. Microdevices 11, 4 (2009)CrossRefGoogle Scholar
  10. D. Irimia, Ann. Rev. Biomed. Eng. 12, 259 (2010)Google Scholar
  11. K. Kamei, J. Lab. Autom. 18, 6 (2013)CrossRefGoogle Scholar
  12. K. Kamei, S. Guo, Z.T. Yu, H. Takahashi, E. Gschweng, C. Suh, X. Wang, J. Tang, J. McLaughlin, O.N. Witte, K.B. Lee, H.R. Tseng, Lab Chip 9, 4 (2009)CrossRefGoogle Scholar
  13. T.M. Keenan, A. Folch, Lab Chip 8, 1 (2008)CrossRefGoogle Scholar
  14. T. Kihara, J. Ito, J. Miyake, PLoS One 8, e82382 (2013)CrossRefGoogle Scholar
  15. B.J. Kim, M. Wu, Ann. Biomed. Eng. 40, 6 (2012)Google Scholar
  16. D.B. Kolesky, R.L. Truby, A.S. Gladman, T.A. Busbee, K.A. Homan, J.A. Lewis, Adv. Mater. 26, 19 (2014)Google Scholar
  17. Kshitiz, D.H. Kim, D.J. Beebe, A. Levchenko, Trends Biotechnol 29, 8 (2011)CrossRefGoogle Scholar
  18. W.E. Lowry, L. Richter, R. Yachechko, A.D. Pyle, J. Tchieu, R. Sridharan, A.T. Clark, K. Plath, Proc. Natl. Acad. Sci. U. S. A. 105, 8 (2008)CrossRefGoogle Scholar
  19. T. Ludwig, V. Bergendahl, M. Levenstein, J. Yu, M.D. Probasco, J. Thomson, Nat. Meth. 3, 8 (2006a)Google Scholar
  20. T. Ludwig, M.E. Levenstein, J.M. Jones, W.T. Berggren, E.R. Mitchen, J.L. Frane, L.J. Crandall, C.A. Daigh, K.R. Conard, M.S. Piekarczyk, R.A. Llanas, J.A. Thomson, Nat. Biotechnol. 24, 2 (2006b)CrossRefGoogle Scholar
  21. A. Muller, B. Homey, H. Soto, N. Ge, D. Catron, M.E. Buchanan, T. McClanahan, E. Murphy, W. Yuan, S.N. Wagner, J.L. Barrera, A. Mohar, E. Verastegui, A. Zlotnik, Nature 410, 6824 (2001)CrossRefGoogle Scholar
  22. J.V. Nauman, P.G. Campbell, F. Lanni, J.L. Anderson, Biophys. J. 92, 4444 (2007)CrossRefGoogle Scholar
  23. A. Pluen, P.A. Netti, R.K. Jain, D.A. Berk, Biophys. J. 77, 542 (1999)CrossRefGoogle Scholar
  24. L. Przybyla, L. Voldman, Annu. Rev. Anal. Chem. 5, 293 (2012)Google Scholar
  25. E.K. Sackmann, A.L. Fulton, D.J. Beebe, Nature 507, 181 (2014)Google Scholar
  26. M.D. Symes, P.J. Kitson, J. Yan, C.J. Richmond, G.J. Cooper, R.W. Bowman, T. Vilbrandt, L. Cronin, Nat. Chem. 4, 5 (2012)CrossRefGoogle Scholar
  27. K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, Cell 131, 5 (2007)CrossRefGoogle Scholar
  28. J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, J.M. Jones, Science 282, 5391 (1998)CrossRefGoogle Scholar
  29. H. Yoshioka, M. Mikami, Y. Mori, E. Tsuchida, J. Macromol. Sci. Pure A31, 113 (1994a)Google Scholar
  30. H. Yoshioka, M. Mikami, Y. Mori, E. Tsuchida, J. Macromol. Sci. Pure A31, 121 (1994b)Google Scholar
  31. J. Yu, M.A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J.L. Frane, S. Tian, J. Nie, G.A. Jonsdottir, V. Ruotti, R. Stewart, I.I. Slukvin, J.A. Thomson, Science 318, 5858 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ken-ichiro Kamei
    • 1
  • Yasumasa Mashimo
    • 1
    • 2
  • Yoshie Koyama
    • 1
  • Christopher Fockenberg
    • 1
  • Miyuki Nakashima
    • 1
  • Minako Nakajima
    • 1
  • Junjun Li
    • 1
  • Yong Chen
    • 1
    • 3
  1. 1.Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto UniversityKyotoJapan
  2. 2.Environmental Chemistry and Engineering, Graduate School of Interdisciplinary Science and EngineeringTokyo Institute of TechnologyKanagawaJapan
  3. 3.École Normale SupérieureParisFrance

Personalised recommendations