Biomedical Microdevices

, 17:118 | Cite as

Isolation of nucleated red blood cells in maternal blood for Non-invasive prenatal diagnosis

  • Yeongje Byeon
  • Chang-Seok KiEmail author
  • Ki-Ho HanEmail author


This paper introduces a two-step cascade enrichment method for isolating nucleated red blood cells (NRBCs) in maternal blood. The two-step enrichment platform consists of a positive enrichment process based on a red blood cell (RBC) hyperaggregation method and a negative enrichment process using microfluidic technology. An analytical evaluation using blood samples from patients with leukemia showed that the while blood cell (WBC) depletion and NRBC loss rates of the positive enrichment process were 93.98 % and 6.02 %, respectively. Through the two-step cascade enrichment method, 1–396 NRBCs and only 0–6 WBCs were isolated from 1 mL of 18 maternal blood samples. Experimental results also showed that the WBC depletion rate of the proposed two-step method was more than 625,000-fold, and the purity of enriched NRBCs ranged from 20 % to 100 %. Furthermore, SRY (the sex-determining region of the Y chromosome) genes were detected in enriched NRBCs, thereby demonstrating that enriched NRBCs contain fetus-derived NRBCs.


Nucleated red blood cells Prenatal diagnosis RBC hyperaggregation Lateral magnetophoretic microseparator Microfluidic device 



This work was supported by Mid-career Research Program through NRF grant funded by the MEST (Grant No. NRF-2012R1A2A2A03045174).

Supplementary material

10544_2015_21_MOESM1_ESM.doc (4.5 mb)
ESM 1 (DOC 4640 kb)


  1. M. Choolani, K. O'Donoghue, D. Talbert, S. Kumar, I. Roberts, E. Letsky, P.R. Bennett, N.M. Fisk, Characterization of first trimester fetal erythroblasts for non-invasive prenatal diagnosis. Mol. Hum. Reprod. 9, 227–235 (2003). doi: 10.1093/molehr/gag027 CrossRefGoogle Scholar
  2. M. Choolani, A.P. Mahyuddin, S. Hahn, The promise of fetal cells in maternal blood. Best Pract. Res. Clin. Obstet. Gynaecol. 26, 655–667 (2012)CrossRefGoogle Scholar
  3. A. Fukushima, Y. Utsugisawa, Y. Wada, N. Mizusawa, S. Horiuchi, T. Kagabu, The application of magnetic cell sorter (MACS) to detect fetal cells in maternal peripheral blood. J. Obstet. Gynaecol. Res. 27, 155–162 (2001)CrossRefGoogle Scholar
  4. J.D. Goldberg, Fetal cells in maternal circulation: progress in analysis of a rare event. Am. J. Hum. Genet. 61, 806–809 (1997)CrossRefGoogle Scholar
  5. H. Hamada, T. Arinami, T. Kubo, H. Hamaguchi, H. Iwasaki, Fetal nucleated cells in maternal peripheral blood: frequency and relationship to gestational age. Hum. Genet. 91, 427–432 (1993)CrossRefGoogle Scholar
  6. N. Han, J.H. Shin, K.-H. Han, An on-chip RT-PCR microfluidic device, that integrates mRNA extraction, cDNA synthesis, and gene amplification. RSC Adv. 4, 9160–9165 (2014)CrossRefGoogle Scholar
  7. S. Henkelman, G. Rakhorst, H.C. Van Der Mei, H.J. Busscher, Use of hydroxyethyl starch for inducing red blood cell aggregation. Clin. Hemorheol. Microcirc. 52, 27–35 (2012). doi: 10.3233/CH-2012-1542 Google Scholar
  8. I. Hromadníková, S. Karamanov, B. Houbová, D. Hridelova, J. Kofer, M. Mrstinova, Non-invasive fetal sex determination on fetal erythroblasts from the maternal circulation using fluorescence in situ hybridisation. Fetal Diagn. Ther. 17, 193–199 (2002)CrossRefGoogle Scholar
  9. R. Huang, T.A. Barber, M.A. Schmidt, R.G. Tompkins, M. Toner, D.W. Bianchi, R. Kapur, W.L. Flejter, A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women. Prenat. Diagn. 28, 829–899 (2008)CrossRefGoogle Scholar
  10. M.W. Kilpatrick, T. Tafas, M.I. Evans, L.G. Jackson, A. Antsaklis, B. Brambati, P. Tsipouras, Automated detection of rare fetal cells in maternal blood: eliminating the false-positive XY signals in XX pregnancies. Am. J. Obstet. Gynecol. 190, 1571–1581 (2004)CrossRefGoogle Scholar
  11. S. Kim, S.-I. Han, M.-J. Park, C.-W. Jeon, Y.-D. Joo, I.-H. Choi, K.-H. Han, Circulating tumor cell microseparator based on lateral magnetophoresis and immunomagnetic nanobeads. Anal. Chem. 85, 2779–2786 (2013)CrossRefGoogle Scholar
  12. K.H. Kwon, Y.J. Jeon, H.S. Hwang, K.A. Lee, Y.J. Kim, H.W. Chung, M.G. Pang, A high yield of fetal nucleated red blood cells isolated using optimal osmolality and a double-density gradient system. Prenat. Diagn. 27, 1245–1250 (2007)CrossRefGoogle Scholar
  13. A. Mavrou, E. Kouvidi, A. Antsaklis, A. Souka, S. KitsiouTzeli, A. Kolialexi, Identification of nucleated red blood cells in maternal circulation: a second step in screening for fetal aneuploidies and pregnancy complications. Prenat. Diagn. 27, 150–153 (2007)CrossRefGoogle Scholar
  14. B. Neu, R. Wenby, H.J. Meiselman, Effects of dextran molecular weight on red blood cell aggregation. Biophys. J. 95, 3059–3065 (2008). doi: 10.1529/biophysj.108.130328 CrossRefGoogle Scholar
  15. E.S. Ramos, C.A. Moreira-Filho, Y.A.M.V.A. Vicente, M.A.S. Llorach-Velludo, J. Silvio Tucci, M.H.O. Duarte, A.G. Araújo, L. Martelli, SRY-negative true hermaphrodites and an XX male in two generations of the same family. Hum. Genet. 97, 596–598 (1996)CrossRefGoogle Scholar
  16. M.A. Renier, A. Vereecken, E.V. Herck, D. Straetmans, P. Ramaekers, P. Buytaert, Second trimester maternal dimeric inhibin-a in the multiple-marker screening test for down's syndrome. Hum. Reprod. 13, 744–748 (1998)CrossRefGoogle Scholar
  17. A. Sekizawa, T. Kimura, M. Sasaki, S. Nakamura, R. Kobayashi, T. Sato, Prenatal diagnosis of duchenne muscular dystrophy using a single fetal nucleated erythrocyte in maternal blood. Neurology 46, 1350–1353 (1996)CrossRefGoogle Scholar
  18. A. Sekizawa, Y. Purwosunu, A. Farina, T. Okai, H. Takabayashi, M. Kita, H. Yura, M. Kitagawa, Development of noninvasive fetal DNA diagnosis from nucleated erythrocytes circulating in maternal blood. Prenat. Diagn. 27, 846–848 (2007)CrossRefGoogle Scholar
  19. L.G. Shaffer, T.-H. Bui, Molecular cytogenetic and rapid aneuploidy detection methods in prenatal diagnosis. Am. J. Med. Genet. C: Semin. Med. Genet. 145C, 87–98 (2007)CrossRefGoogle Scholar
  20. G. Smits, W. Holzgreve, S. Hahn, An examination of different percoll density gradients and magnetic activated cell sorting (MACS) for the enrichment of fetal erythroblasts from maternal blood. Arch. Gynecol. Obstet. 263, 160–163 (2000)CrossRefGoogle Scholar
  21. S. Sohda, T. Arinami, H. Hamada, H. Nakauchi, H. Hamaguchi, T. Kubo, The proportion of fetal nucleated red blood cells in maternal blood: estimation by FACS analysis. Prenat. Diagn. 17, 743–752 (1997)CrossRefGoogle Scholar
  22. C. Wagner, P. Steffen, S. Svetina, Aggregation of red blood cells: from rouleaux to clot formation. C. R. Phys. 14, 459–469 (2013). doi: 10.1016/j.crhy.2013.04.004 CrossRefGoogle Scholar
  23. J.Y. Wang, D.K. Zhen, V.M. Falco, A. Farina, Y.L. Zheng, L.C. Delli-Bovi, D.W. Bianchi, Fetal nucleated erythrocyte recovery: fluorescence activated cell sorting-based positive selection using anti-gamma globin versus magnetic activated cell sorting using anti-CD45 depletion and anti-gamma globin positive selection. Cytometry 39, 224–230 (2000). doi: 10.1002/(SICI)1097-0320(20000301)39:3<224::AID-CYTO8>3.0.CO;2-J CrossRefGoogle Scholar
  24. R.D. Wilson, S. Langlois, J.-A. Johnson, Mid-trimester amniocentesis fetal loss rate. J. Obstet. Gynaecol. Can. 29, 586–590 (2007)Google Scholar
  25. Z. Xu, J. Xie, J. Meng, P. Li, X. Pan, Q. Zhou, Non-invasive prenatal diagnosis: a comparison of cell free fetal DNA (cffDNA) based screening and fetal nucleated red blood cell (fnRBC) initiated testing. N. Am. J. Med. Sci. 6, 194–199 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Nano Science and Engineering, Center for Nano ManufacturingInje UniversityGimhaeRepublic of Korea
  2. 2.Department of Laboratory Medicine and Genetics, Samsung Medical CenterSungkyunkwan University School of MedicineGangnam-guRepublic of Korea

Personalised recommendations