Biomedical Microdevices

, 17:96 | Cite as

Influence of surface modification and static pressure on microdialysis protein extraction efficiency

Article

Abstract

There is growing interest in using microdialysis (MD) for monitoring larger and more complex molecules such as neuropeptides and proteins. This promotes the use of MD membranes with molecular weight cut off (MWCO) of 100 kDa or above. The hydrodynamic property of the membrane goes to ultrafiltration or beyond, making the MD catheters more sensitive to pressure. In the meantime, despite the large pore size, studies have shown that membrane biofouling still lead to unstable catheter performance. The objective is to study in vitro how 500 kDa dextran and Poloxamer 407 surface modification affect the fluid recovery (FR) and extraction efficiency (EE) of 100 kDa MWCO MD catheters. A pressure chamber was designed to facilitate the tests, using as MD sample a protein standard with similar concentrations as in human cerebral spinal fluid, comparing native and Poloxamer 407 modified MD catheters. The collected dialysate fractions were examined for FR and protein EE, employing Dot-it Spot-it Protein Assay for total protein EE and targeted mass spectrometry (MS) for EE of individual proteins and peptides. The FR results suggested that the surface modified catheters were less sensitive to the pressure and provide higher precision, and provided a FR closer to 100 %. The surface modification did not show a significant effect on the protein EE. The average total protein EE of surface modified catheters was slightly higher than that of the native ones. The MS EE data of individual proteins showed a clear trend of complex response in EE with pressure.

Keywords

Microdialysis Surface modification Poloxamer Protein Extraction efficiency 

Supplementary material

10544_2015_5_MOESM1_ESM.docx (42 kb)
ESM 1(DOCX 41 kb)

References

  1. X.P. Ao, J.A. Stenken, Methods 38, 331–341 (2006)CrossRefGoogle Scholar
  2. C.S. Chaurasia, Biomed. Chromatogr. 13, 317–332 (1999)CrossRefGoogle Scholar
  3. J.T. Chu, K. Hjort, A. Larsson, A.P. Dahlin, Biomed. Microdevices 16, 301–310 (2014a)CrossRefGoogle Scholar
  4. J.T. Chu, V. Koudriavtsev, K. Hjort, A.P. Dahlin, Anal. Bioanal. Chem. 406(29), 7601–7609 (2014b)CrossRefGoogle Scholar
  5. G.F. Clough, C.F. Jackson, J.J.P. Lee, S.C. Jamal, M.K. Church, J. Invest. Dermatol. 127, 2799–2806 (2007)Google Scholar
  6. E.P.K. Currie, Adv. Colloid Interf. Sci. 100–102, 205–265 (2003)CrossRefGoogle Scholar
  7. R.C. Sides, J.A. Stenken, Eur. J. Pharm. Sci. 57, 74–86 (2014)CrossRefGoogle Scholar
  8. A. Pettersson, A. Amirkhani, B. Arvidsson, K. Markides, J. Bergquist, Anal. Chem. 76, 1678–1682 (2004)CrossRefGoogle Scholar
  9. A.P. Dahlin, M. Wetterhall, K.D. Caldwell, A. Larsson, J. Bergquist, L. Hillered, K. Hjort, Anal. Chem. 82, 4376–4385 (2010)CrossRefGoogle Scholar
  10. A.P. Dahlin, K. Hjort, L. Hillered, M.O. Sjodin, J. Bergquist, M. Wetterhall, Anal. Bioanal. Chem. 402(6), 2057–2067 (2012)CrossRefGoogle Scholar
  11. A.P. Dahlin, K. Purins, F. Clausen, J.T. Chu, A. Sedigh, T. Lorant, P. Enblad, A. Lewen, L. Hillered, Anal. Chem. 86(17), 8671–8679 (2014)Google Scholar
  12. J.P. Galea, P.J. Tyrrell, H.P. Patel, A. Vail, A.T. King, S.J. Hopkins, Physiol. Meas. 35(3), N21–N28 (2014)CrossRefGoogle Scholar
  13. A. Helmy, K.L. Carpenter, P.J. Hutchinson, Curr. Med. Chem. 14, 1525–1537 (2007)CrossRefGoogle Scholar
  14. A. Helmy, K.L.H. Carpenter, J.N. Skepper, P.J. Kirkpatrick, J.D. Pickard, P.J. Hutchinson, J. Neurotrauma 26, 549–561 (2009)CrossRefGoogle Scholar
  15. L. Hillered, P. Vespa, D. Hovda, J. Neurotrauma 22, 3–41 (2005)CrossRefGoogle Scholar
  16. G.D. Keeler, J.M. Durdik, J.A. Stenken, Eur. J. Pharm. Sci. 57, 60–67 (2014)CrossRefGoogle Scholar
  17. S. Kjellstrom, N. Appels, M. Ohlrogge, T. Laurell, G. Marko-Varga, Chromatographia 50, 539–546 (1999)CrossRefGoogle Scholar
  18. M. Lönnberg, The standard Dot-it-Spot-it® protein assay experimental procedures. (Maplestone AB, 2015), http://dot-it-spot-it.com/method/. Accessed 01 Feb 2015
  19. B. MacLean, D.M. Tomazela, N. Shulman, M. Chambers, G.L. Finney, B. Frewen, R. Kern, D.L. Tabb, D.C. Liebler, M.J. MacCoss, Bioinformatics 26(7), 966–968 (2010)CrossRefGoogle Scholar
  20. N. Plock, C. Kloft, Eur. J. Pharm. Sci. 25, 1–24 (2005)CrossRefGoogle Scholar
  21. H. Rosdahl, K. Hamrin, U. Ungerstedt, J. Henriksson, Int. J. Biol. Macromol. 28, 69–73 (2000)CrossRefGoogle Scholar
  22. A.J. Rosenbloom, D.M. Sipe, V.W. Weedn, J. Neurosci Methods 148, 147–153 (2005)CrossRefGoogle Scholar
  23. R.J. Schutte, S.A. Oshodi, W.M. Reichert, Anal. Chem. 76, 6058–6063 (2004)CrossRefGoogle Scholar
  24. K.L. Snyder, C.E. Nathan, A. Yee, J.A. Stenken, Analyst 126, 1261–1268 (2001)CrossRefGoogle Scholar
  25. T. Undin, Characterization of molecular adsorption using liquid chromatography and mass spectrometry, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, (Acta Universitatis Upsaliensis, 2015, 1248. 50 pp), ISBN 978-91-554-9235-9Google Scholar
  26. U. Ungerstedt, J. Intern. Med. 230, 365–373 (1991)CrossRefGoogle Scholar
  27. M. Wetterhall, J. Bergquist, L. Hillered, K. Hjort, A.P. Dahlin, Eur. J. Pharm. Sci. 57, 34–40 (2014)CrossRefGoogle Scholar
  28. C.D. Winter, F. Iannotti, A.K. Pringle, C. Trikkas, G.F. Clough, M.K. Church, J. Neurosci. Methods 119, 45–50 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Engineering SciencesUppsala UniversityUppsalaSweden
  2. 2.Department of Chemistry-BMC, Analytical Chemistry and Science for Life LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations