Advertisement

Biomedical Microdevices

, 17:107 | Cite as

A model microfluidics-based system for the human and mouse retina

  • Shawn Mishra
  • Ankush Thakur
  • Stephen Redenti
  • Maribel VazquezEmail author
Article

Abstract

The application of microfluidics technologies to the study of retinal function and response holds great promise for development of new and improved treatments for patients with degenerative retinal diseases. Restoration of vision via retinal transplantation therapy has been severely limited by the low numbers of motile cells observed post transplantation. Using modern soft lithographic techniques, we have developed the μRetina, a novel and convenient biomimetic microfluidics device capable of examing the migratory behavior of retinal lineage cells within biomimetic geometries of the human and mouse retina. Coupled computer simulations and experimental validations were used to characterize and confirm the formation of chemical concentration gradients within the μRetina, while real-time images within the device captured radial and theta cell migration in response to concentration gradients of stromal derived factor (SDF-1), a known chemoattractant. Our data underscore how the μRetina can be used to examine the concentration-dependent migration of retinal progenitors in order to enhance current therapies, as well as develop novel migration-targeted treatments.

Keywords

Retina Progenitor SDF-1 Diffusion Migration 

References

  1. E. Margalit, S.R. Sadda, Retinal and optic nerve diseases. Artif. Organs 27, 963–974 (2003)CrossRefGoogle Scholar
  2. C. Rivolta, D. Sharon, M.M. DeAngelis, T.P. Dryja, Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns. Hum. Mol. Genet. 11, 1219–1227 (2002)CrossRefGoogle Scholar
  3. A.D. Kulkarni, B.D. Kuppermann, Wet age-related macular degeneration. Adv. Drug Deliv. Rev. 57, 1994–2009 (2005)CrossRefGoogle Scholar
  4. H.J. Klassen, T.F. Ng, Y. Kurimoto, I. Kirov, M. Shatos, P. Coffey, M.J. Young, Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Invest. Ophthalmol. Vis. Sci. 45, 4167–4173 (2004)CrossRefGoogle Scholar
  5. R.E. MacLaren, R. Pearson, A. MacNeil, R. Douglas, T. Salt, M. Akimoto, A. Swaroop, J. Sowden, R. Ali, Retinal repair by transplantation of photoreceptor precursors. Nature 444, 203–207 (2006)CrossRefGoogle Scholar
  6. S. Redenti, W.L. Neeley, S. Rompani, S. Saigal, J. Yang, H. Klassen, R. Langer, M.J. Young, Engineering retinal progenitor cell and scrollable poly (glycerolsebacate) composites for expansion and subretinal transplantation. Biomaterials 30, 3405–3414 (2009)CrossRefGoogle Scholar
  7. J.S. Meyer, M.L. Katz, J.A. Maruniak, M.D. Kirk, Embryonic stem cell derived neural progenitors incorporate into degenerating retina and enhance survival of host photoreceptors. Stem Cells 24, 274–283 (2006)CrossRefGoogle Scholar
  8. S. Tao, C. Young, S. Redenti, Y. Zhang, H. Klassen, T. Desai, M.J. Young, Survival, migration and differentiation of retinal progenitor cells transplanted on micromachined poly (methyl methacrylate) scaffolds to the subretinal space. Lab Chip 7, 695–701 (2007)CrossRefGoogle Scholar
  9. M. Tomita, E. Lavik, H. Klassen, T. Zahir, R. Langer, M.J. Young, Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cells 23, 1579–1588 (2005)CrossRefGoogle Scholar
  10. T.F. Ng, E. Lavik, H. Keino, A.W. Taylor, R.S. Langer, M.J. Young, Creating an immune privileged site using retinal progenitor cells and biodegradable polymers. Stem Cells 25, 1552–1559 (2007)CrossRefGoogle Scholar
  11. J. Lakowski, M. Baron, J. Bainbridge, A. Barber, R. Pearson, R. Ali, J. Sowden, Cone and rod photoreceptor transplantation in models of the childhood retinopathy Leber congenital amaurosis using flow-sorted Crx-positive donor cells. Hum. Mol. Genet. ddq378 (2010)Google Scholar
  12. E. West, R. Pearson, R. MacLaren, J. Sowden, R. Ali, Cell transplantation strategies for retinal repair. Prog. Brain Res. 175, 3–21 (2009)CrossRefGoogle Scholar
  13. P.E. Nickerson, K.M. Ronellenfitch, N.F. Csuzdi, J.D. Boyd, P.L. Howard, K.R. Delaney, R.L. Chow, Live imaging and analysis of postnatal mouse retinal development. BMC Dev. Biol. 13, 24 (2013)CrossRefGoogle Scholar
  14. C. Mohlin, K. Johansson, Death of photoreceptors in organotypic retinal explant cultures: implication of rhodopsin accumulation and endoplasmic reticulum stress. J. Neurosci. Methods 197, 56–64 (2011)CrossRefGoogle Scholar
  15. I. Meyvantsson, D.J. Beebe, Cell culture models in microfluidic systems. Annu. Rev. Anal. Chem. 1, 423–449 (2008)CrossRefGoogle Scholar
  16. F. Morin, N. Nishimura, L. Griscom, B. LePioufle, H. Fujita, Y. Takamura, E. Tamiya, Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips. Biosens. Bioelectron. 21, 1093–1100 (2006)CrossRefGoogle Scholar
  17. J. Park, H. Koito, J. Li, A. Han, A multi-compartment CNS neuron-glia coculture microfluidic platform. J. Vis. Exp.: JoVE (2009)Google Scholar
  18. T. Stieglitz, M. Schuettler, J.-U. Meyer, Micromachined, polyimide-based devices for flexible neural interfaces. Biomed. Microdevices 2, 283–294 (2000)CrossRefGoogle Scholar
  19. S. Hosmane, I.H. Yang, A. Ruffin, N. Thakor, A. Venkatesan, Circular compartmentalized microfluidic platform: study of axon–glia interactions. Lab Chip 10, 741–747 (2010)CrossRefGoogle Scholar
  20. H.J. Kim, J.W. Park, J.W. Park, J.H. Byun, B. Vahidi, S.W. Rhee, N.L. Jeon, Integrated microfluidics platforms for investigating injury and regeneration of CNS axons. Ann. Biomed. Eng. 40, 1268–1276 (2012)CrossRefGoogle Scholar
  21. J.W. Park, B. Vahidi, A.M. Taylor, S.W. Rhee, N.L. Jeon, Microfluidic culture platform for neuroscience research. Nat. Protoc. 1, 2128–2136 (2006)CrossRefGoogle Scholar
  22. B. Vahidi, J.W. Park, H.J. Kim, N.L. Jeon, Microfluidic-based strip assay for testing the effects of various surface-bound inhibitors in spinal cord injury. J. Neurosci. Methods 170, 188–196 (2008)CrossRefGoogle Scholar
  23. P.S. Dittrich, A. Manz, Lab-on-a-chip: microfluidics in drug discovery. Nat. Rev. Drug Discov. 5, 210–218 (2006)CrossRefGoogle Scholar
  24. R.S. Shawgo, A.C. Richards Grayson, Y. Li, M.J. Cima, BioMEMS for drug delivery. Curr. Opinion Solid State Mater. Sci. 6, 329–334 (2002)CrossRefGoogle Scholar
  25. D.A. Lavan, T. McGuire, R. Langer, Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21, 1184–1191 (2003)CrossRefGoogle Scholar
  26. S. Estermann, K. Yuttitham, J.A. Chen, O.-T. Lee, R.L. Stamper, Comparative in vitro flow study of 3 different Ex-PRESS miniature glaucoma device models. J. Glaucoma 22, 209–214 (2013)CrossRefGoogle Scholar
  27. T. Pan, M.S. Stay, V.H. Barocas, J.D. Brown, B. Ziaie, Modeling and characterization of a valved glaucoma drainage device with implications for enhanced therapeutic efficacy. IEEE Trans. Biomed. Eng. 52, 948–951 (2005)CrossRefGoogle Scholar
  28. B. Schlosshauer, A. Hoff, E. Guenther, E. Zrenner, H. Ha, Towards a retina prosthesis model: neurons on microphotodiode arrays in vitro. Biomed. Microdevices 2, 61–72 (1999)CrossRefGoogle Scholar
  29. P. Camelliti, J.O. Gallagher, P. Kohl, A.D. McCulloch, Micropatterned cell cultures on elastic membranes as an in vitro model of myocardium. Nat. Protoc. 1, 1379–1391 (2006)CrossRefGoogle Scholar
  30. C.M. Puleo, W.M. Ambrose, T. Takezawa, J. Elisseeff, T.-H. Wang, Integration and application of vitrified collagen in multilayered microfluidic devices for corneal microtissue culture. Lab Chip 9, 3221–3227 (2009)CrossRefGoogle Scholar
  31. J. Park, K.B. Kim, J. Lee, H.C. Kim, D. Huh, Organomimetic microsystems technologies. Biomed. Eng. Lett. 2, 88–94 (2012)CrossRefGoogle Scholar
  32. M.R. Steedman, S.L. Tao, H. Klassen, T.A. Desai, Enhanced differentiation of retinal progenitor cells using microfabricated topographical cues. Biomed. Microdevices 12, 363–369 (2010)CrossRefGoogle Scholar
  33. Q. Kong, R.J. Majeska, M. Vazquez, Migration of connective tissue-derived cells is mediated by ultra-low concentration gradient fields of EGF. Exp. Cell Res. 317, 1491–1502 (2011)CrossRefGoogle Scholar
  34. U.J. Unachukwu, M. Sauane, M. Vazquez, S. Redenti, Microfluidic generated EGF-gradients induce chemokinesis of transplantable retinal progenitor cells via the JAK/STAT and PI3kinase signaling pathways. PLoS ONE 8, e83906 (2013)CrossRefGoogle Scholar
  35. Q. Kong, R.A. Able, V. Dudu, M. Vazquez, A microfluidic device to establish concentration gradients using reagent density differences. J. Biomech. Eng. 132, 121012 (2010)CrossRefGoogle Scholar
  36. A. Hussain, C. Starita, A. Hodgetts, J. Marshall, Macromolecular diffusion characteristics of ageing human Bruch’s membrane: implications for age-related macular degeneration (AMD). Exp. Eye Res. 90, 703–710 (2010)CrossRefGoogle Scholar
  37. L. Pitkänen, V.-P. Ranta, H. Moilanen, A. Urtti, Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest. Ophthalmol. Vis. Sci. 46, 641–646 (2005)CrossRefGoogle Scholar
  38. C.W. Oyster, The Human Eye (Sinauer, Sunderland, 1999)Google Scholar
  39. S. Remtulla, P. Hallett, A schematic eye for the mouse, and comparisons with the rat. Vis. Res. 25, 21–31 (1985)CrossRefGoogle Scholar
  40. J. Mackenzie, Uniform convergence analysis of an upwind finite-difference approximation of a convection-diffusion boundary value problem on an adaptive grid. IMA J. Numer. Anal. 19, 233–249 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  41. F. Steward, Growth and organized development of cultured cells. III. Interpretations of the growth from free cell to carrot plant. Am. J. Bot. 709–713 (1958)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shawn Mishra
    • 1
  • Ankush Thakur
    • 1
  • Stephen Redenti
    • 2
  • Maribel Vazquez
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringCity College of New YorkNew YorkUSA
  2. 2.Department of BiologyLehman CollegeNew YorkUSA

Personalised recommendations