Advertisement

Biomedical Microdevices

, 17:98 | Cite as

Piezo-actuated parallel mechanism for biological cell release at high speed

  • Ebubekir AvciEmail author
  • Takayuki Hattori
  • Kazuto Kamiyama
  • Masaru Kojima
  • Mitsuhiro Horade
  • Yasushi Mae
  • Tatsuo Arai
Article

Abstract

In this paper, a dynamic releasing approach is proposed for high-speed biological cell manipulation. A compact parallel mechanism for grasping and releasing microobjects is used to generate controllable vibration to overcome the strong adhesion forces between the end effector and the manipulated object. To reach the required acceleration of the end effector, which is necessary for the detachment of the target object by overcoming adhesion forces, vibration in the end effector is generated by applying sinusoidal voltage to the PZT actuator of the parallel mechanism. For the necessary acceleration, we focus on the possible range of the frequency of the PZT-actuator-induced vibration, while minimizing the amplitude of the vibration (14 nm) to achieve precise positioning. The effect of the air and liquid environments on the required vibration frequency for successful release is investigated. For the first time, release results of microbeads and biological cells are compared. Release of the biological cells with 100 % success rate suggests that the proposed active release method is an appropriate solution for adhered biological cells during the release task.

Keywords

Cell handling Micro-scale release Controlled vibration Micro-manipulation Piezo actuator 

Notes

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research on Innovative Areas “Bio Assembler” (23106005) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Supplementary material

(MP4 7.03 MB)

References

  1. F. Arai, D. Andou, Y. Nonoda, T. Fukuda, H. Iwata, K. Itoigawa, Micro endeffector with micro pyramids and integrated piezoresistive force sensor. in Proceedings of the IEEE/RSJ International Conference on Intelligent Robotics Systems, (1996)Google Scholar
  2. E. Avci, C.N. Nguyen, K. Ohara, M. Kojima, Y. Mae, T. Arai, Towards High Speed Automated Micromanipulation. in Proceedings of the IEEE International Conference on Robotics and Automation, (2013)Google Scholar
  3. E. Avci, H. Yabugaki, T. Hattori, K. Kamiyama, M. Kojima, Y. Mae, T. Arai, Dynamic releasing of biological cells at high speed using parallel mechanism to control adhesion forces. in Proceedings of the IEEE International Conference on Robotics and Automation, (2014)Google Scholar
  4. B.K. Chen, Y. Zhang, Y. Sun, Active release of microobjects using a MEMS microgripper to overcome adhesion forces. J. Microelectromech. Syst. 18, 3 (2009)CrossRefGoogle Scholar
  5. T. Chen, M. Pan, Y. Wang, J. Liu, L. Chen, L. Sun, Manipulation of microobjects based on dynamic adhesion control. Int. J. Adv. Robot. Syst. 9, 89 (2012)Google Scholar
  6. H.K. Chu, J.K. Mills, W.L. Cleghorn, Dual-arm micromanipulation and handling of objects through visual images. in Proceedings of the IEEE International Conference on Mech. Auto., (2012)Google Scholar
  7. S.E. Cross, Y.S. Jin, J. Rao, J.K. Gimzewski, Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 12 (2007)CrossRefGoogle Scholar
  8. J. Dejeu, M. Gauthier, P. Rougeot, W. Boireau, Adhesion forces controlled by chemical self-assembly and pH: application to robotic microhandling. ACS Appl. Mater. Interfaces. 1, 9 (2009)CrossRefGoogle Scholar
  9. H. Demaghsi, H. Mirzajani, H.B. Ghavifekr, A novel electrostatic based microgripper (cellgripper) integrated with contact sensor and equipped with vibrating system to release particles actively. Microsystem. Tech. 20, 12 (2014)Google Scholar
  10. T. Ejima, K. Ohara, M. Kojima, Y. Mae, T. Tanikawa, T. Arai, Development of microhand which utilizes singularity of parallel mechanism. in Proceedings of the IEEE/RSJ International Conference on Intelligent Robotic Systems, (2013)Google Scholar
  11. Y. Fang, X. Tan, A dynamic JKR model with application to vibrational release in micromanipulation. in Proceedings of the IEEE/RSJ International Conference on Intelligent Robotic Systems, (2006)Google Scholar
  12. R.S. Fearing, Survey of sticking effects for micro-parts. in Proceedings of the IEEE/RSJ International Conference on Intelligent Robotic Systems, (1995)Google Scholar
  13. O. Fuchiwaki, A. Ito, D. Misaki, H. Aoyama, Multi-axial micromanipulation organized by versatile micro robots and micro tweezers. in Proceedings of the IEEE International Conference on Robotic Automation, (2008)Google Scholar
  14. D.S. Haliyo, Y. Rollot, S. Regnier, Manipulation of micro-objects using adhesion forces and dynamical effects. in Proceedings of the IEEE International Conference on Robotic Automation, (2002)Google Scholar
  15. K. Kim, X. Liu, Y. Zhang, Y. Sun, Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback. J. Micromech. Microeng. 18, 5 (2008)Google Scholar
  16. T.G. Leong, C.L. Randall, B.R. Benson, N. Bassik, G.M. Stern, D.H. Gracias, Tetherless thermobiochemically actuated microgrippers. Proc. Natl. Acad. Sci. 106, 3 (2009)CrossRefGoogle Scholar
  17. B. Lopez-Walle, M. Gauthier, N. Chaillet, Principle of a submerged freeze gripper for microassembly. IEEE Trans. Robot. 24, 4 (2008)CrossRefGoogle Scholar
  18. Y. Menguc, S.Y. Yang, S. Kim, J.A. Rogers, M. Sitti, Gecko-inspired controllable adhesive structures applied to micromanipulation. Adv. Funct. Mater. 22, 6 (2012)Google Scholar
  19. H.T. Miyazaki, Y. Tomizawa, S. Saito, T. Sato, N. Shinya, Adhesion of micrometer-sized polymer particles under a scanning electron microscope. J. Appl. Phys. 88, 6 (2000)CrossRefGoogle Scholar
  20. Y. Rollot, S. Regnier, J.-C. Guinot, Simulation of micro-manipulations: Adhesion forces and specific dynamic models. Int. J. Adhes. Adhes. 19, 1 (1999)CrossRefGoogle Scholar
  21. S. Saito, H.T. Miyazaki, T. Sato, K. Takahashi, Kinematics of mechanical and adhesional micromanipulation under a scanning electron microscope. J. Appl. Phys. 92, 9 (2002)Google Scholar
  22. S. Saito, M. Sonoda, Non-impact deposition for electrostatic micromanipulation of a conductive particle by a single probe. J. Micromech. Microeng. 18, 10 (2008)Google Scholar
  23. O. Sardan, V. Eichhorn, D.H. Petersen, S. Fatikow, O. Sigmund, P. Boggild, Rapid prototyping of nanotube-based devices using topology-optimized microgrippers. Nanotechnology. 19, 49 (2008)CrossRefGoogle Scholar
  24. K. Takahashi, H. Kajihara, M. Urago, S. Saito, Y. Mochimaru, T. Onzawa, Voltage required to detach an adhered particle by Coulomb interaction for micromanipulation. J. Appl. Phys. 90, 1 (2001)CrossRefGoogle Scholar
  25. M. Takeuchi, M. Nakajima, M. Kojima, T. Fukuda, Evaluation and application of Thermoresponsive Gel handling towards manipulation of single cells. in Proceedings of the IEEE/RSJ International Conference on Intelligent Robotic Systems, (2011)Google Scholar
  26. H. Wang, Q. Shi, M. Nakajima, M. Takeuchi, T. Chen, P. Di, Q. Huang, T. Fukuda, Rail-guided Multi-robot System for 3D Cellular Hydrogel Assembly with Coordinated Nanomanipulation. Int. J. of Adv. Robot. Sys (2014)Google Scholar
  27. H. Yabugaki, K. Ohara, M. Kojima, Y. Mae, T. Tanikawa, T. Arai, Automated Stable Grasping with Two-Fingered Microhand using Micro Force Sensor. in Proceedings of the IEEE International Conference on Robotic Automation, (2013)Google Scholar
  28. C. Yamahata, D. Collard, B. Legrand, T. Takekawa, M. Kumemura, G. Hashiguchi, H. Fujita, Silicon nanotweezers with subnanometer resolution for the micromanipulation of biomolecules. J. Microelectromech. Syst. 17(3), 623–631 (2008)Google Scholar
  29. L. Yuli, T. Cervinka, P. Kallio, Releasing tool-adhered natural fibrous microscale objects with vacuum system. in Proceedings of the IEEE/ASME Interantional Conference on Adv. Intell. Mech, (2014)Google Scholar
  30. W. Zesch, M. Brunner, A. Weber, Vacuum tool for handling microobjects with a NanoRobot. in Proceedings of the IEEE International Conference on Robotic Automation, (1997)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ebubekir Avci
    • 1
    Email author
  • Takayuki Hattori
    • 2
  • Kazuto Kamiyama
    • 2
  • Masaru Kojima
    • 2
  • Mitsuhiro Horade
    • 2
  • Yasushi Mae
    • 2
  • Tatsuo Arai
    • 2
  1. 1.The Hamlyn Centre for Robotic SurgeryImperial College LondonLondonUK
  2. 2.Department of Systems InnovationOsaka UniversityToyonakaJapan

Personalised recommendations