Biomedical Microdevices

, 17:35 | Cite as

A three-dimensional electrode for highly efficient electrocoalescence-based droplet merging

  • Adrian R. Guzman
  • Hyun Soo Kim
  • Paul de Figueiredo
  • Arum HanEmail author


Droplet merging is one of the key functions in the ever-widening applications of droplet microfluidics. Enhancing the efficiency of electric field-based droplet merging, namely electrocoalescence, can lead to an increase in platform stability and overcome one of the major bottlenecks in further improving throughputs of droplet microfluidic systems. In this work, a paired three-dimensional (3D) electrode design that can provide a uniform electric field within a droplet merging region, which is also properly aligned with the droplet dipole moments for highly efficient electrocoalescence is presented. A systematic study was conducted to compare the droplet merging performance of the presented 3D electrode design to other commonly used planar electrode, coplanar electrode, dual-coplanar electrode, and liquid metal 3D electrode designs. The presented 3D electrode design reduced the threshold input voltage required to obtain droplet fusion by up to 75 %. In addition, a droplet merging efficiency of higher than 95 % was consistently observed, compared to less than 85 % merging efficiency for the conventionally used electrode designs. We expect that this droplet electrocoalescence design will improve the overall throughput and merging success rate in droplet microfluidic based high-throughput assays.


Droplet microfluidics Droplet merging Droplet electrocoalescence 3D electrode 



This work was supported by the National Science Foundation (NSF) Emerging Frontiers in Research and Innovation (EFRI) grant EFRI#1240478 and the Defense Threat Reduction Agency (DTRA) grant HDTRA12-1-0028.

Supplementary material


A 3D copper electrode electrocoalescence video (conducted intentionally at low speed for high-resolution droplet visualization purposes). (MPEG 4160 kb)


  1. A.R. Abate, T. Hung, Natl Acad Sci 107, 19163–19166 (2010)CrossRefGoogle Scholar
  2. J.J. Agresti, PNAS 107, 40004–44009 (2010)CrossRefGoogle Scholar
  3. K. Ahn, J. Agresti, Appl. Phys. Lett. 88, 264105 (2006)CrossRefGoogle Scholar
  4. D. Bardin, M.R. Kendall, Biomicrofluidics 7, 034112 (2013)CrossRefGoogle Scholar
  5. C.N. Baroud, F. Gallaire, Lab Chip 10, 2032–2045 (2010)CrossRefGoogle Scholar
  6. A.S. Basu, Y.B. Gianchandani, J. Micromech. Microeng. 18, 115031 (2008)CrossRefGoogle Scholar
  7. N. Bremond, H. Domejean, Phys. Rev. Lett. 106, 214502 (2011)CrossRefGoogle Scholar
  8. N. Bremond and J. R. M., Soft Matter 8, 10549–10559 (2012)Google Scholar
  9. N. Bremond, A.R. Thiam, Phys. Rev. Lett. 100, 024501 (2008)CrossRefGoogle Scholar
  10. E. Brouzes, M. Medkova, Natl. Acad. Sci. 106, 14195–14200 (2009)CrossRefGoogle Scholar
  11. M. Chabert, K.D. Dorfman, Electrophoresis 26, 3706–3715 (2005)CrossRefGoogle Scholar
  12. S.S. Dixit, H. Kim, Langmuir 26, 6193–6200 (2010)CrossRefGoogle Scholar
  13. A. Huebner, S. Sharma, Lab Chip 8, 1244–1254 (2008)CrossRefGoogle Scholar
  14. D.J. Im, J. Noh, Anal. Chem. 83, 5168–5174 (2011)CrossRefGoogle Scholar
  15. A. Lai, N. Bremond, J. Fluid Mech. 632, 97–107 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  16. Z.G. Li, K. Ando, Lab Chip 11, 1879–1885 (2011)CrossRefGoogle Scholar
  17. D.R. Link, Angew. Chem. Int. Ed. 45, 2556–2560 (2006)CrossRefGoogle Scholar
  18. L. Mazutis, J.-C. Baret, Lab Chip 9, 2902–2908 (2009)CrossRefGoogle Scholar
  19. M. Mohammadi, S. Shahhosseini, Chem. Eng. Tech. 37, 27–35 (2014)CrossRefGoogle Scholar
  20. J. Park, A. Kerner, Public Libr. Sci. 6, e17019 (2011)Google Scholar
  21. C. Priest, S. Herminghaus, Appl. Phys. Lett. 8, 134101–134103 (2006)CrossRefGoogle Scholar
  22. R.M. Schoeman, E.W.M. Kemna, Electrophoresis 35, 385–392 (2014)CrossRefGoogle Scholar
  23. R. Seemann, M. Brinkmann, Rep. Phys. 75, 016601 (2012)CrossRefGoogle Scholar
  24. A.C. Siegel, Adv. Mater. 19, 727–733 (2007)CrossRefGoogle Scholar
  25. P. Singh, N. Aubry, Electrophoresis 28, 644–657 (2007)CrossRefGoogle Scholar
  26. W.-H. Tan, S. Takeuchi, Lab Chip 6, 757–763 (2006)CrossRefGoogle Scholar
  27. R. Tewhey, J. B. Warner. Nat. Biotechnol. 27, 1025–1031 (2009)CrossRefGoogle Scholar
  28. G. Tresset, S. Takeuchi, Anal. Chem. 77, 2795–2801 (2005)CrossRefGoogle Scholar
  29. T.S. Wilhelm, Lab Chip 7, 984–986 (2009)Google Scholar
  30. L. Xu, H. Lee, Lab Chip 12, 3936–3942 (2012)CrossRefGoogle Scholar
  31. M. Zagnoni, J.M. Cooper, Lab Chip 9, 2652–2658 (2009)CrossRefGoogle Scholar
  32. M. Zagnoni, G. Le Lain, Langmuir 26, 14443–14449 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Adrian R. Guzman
    • 1
  • Hyun Soo Kim
    • 1
  • Paul de Figueiredo
    • 2
    • 3
    • 4
    • 5
  • Arum Han
    • 1
    • 6
    Email author
  1. 1.Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Molecular Pathogenesis and ImmunologyTexas A&M Health Science CenterBryanUSA
  3. 3.Department of Veterinary PathobiologyTexas A&M UniversityCollege StationUSA
  4. 4.Norman Borlaug CenterTexas A&M UniversityCollege StationUSA
  5. 5.Department of Microbial Pathogenesis and ImmunologyTexas A&M Health Science CenterBryanUSA
  6. 6.Department of Biomedical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations