Biomedical Microdevices

, Volume 16, Issue 6, pp 869–877 | Cite as

Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations

  • Steven M. Santana
  • Marc A. Antonyak
  • Richard A. Cerione
  • Brian J. Kirby
Article

Abstract

Extracellular shed vesicles, including exosomes and microvesicles, are disseminated throughout the body and represent an important conduit of cell communication. Cancer-cell-derived microvesicles have potential as a cancer biomarker as they help shape the tumor microenvironment to promote the growth of the primary tumor and prime the metastatic niche. It is likely that, in cancer cell cultures, the two constituent extracellular shed vesicle subpopulations, observed in dynamic light scattering, represent an exosome population and a cancer-cell-specific microvesicle population and that extracellular shed vesicle size provides information about provenance and cargo. We have designed and implemented a novel microfluidic technology that separates microvesicles, as a function of diameter, from heterogeneous populations of cancer-cell-derived extracellular shed vesicles. We measured cargo carried by the microvesicle subpopulation processed through this microfluidic platform. Such analyses could enable future investigations to more accurately and reliably determine provenance, functional activity, and mechanisms of transformation in cancer.

Keywords

Microvesicle Exosome Biomarker Cancer Microfluidic Deterministic lateral displacement 

References

  1. M.A. Antonyak, L. Bo, K. Lindsey, J.L. Johnson, J.E. Druso, K.L. Bryant, D.A. Holowka, R.A. Cerione, L.K. Boroughs, Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Pro. Natl. Acad. Sci. 108(42), 17569–17569 (2011)Google Scholar
  2. T.H. Lee, E. D’Asti, N. Magnus, K. Al-Nedawi, B. Meehan, J. Rak, Microvesicles as mediators of intercellular communication in cancer–the emerging science of cellular ’debris’. Semin. Immunopathol. 33(5), 455–67 (2011)CrossRefGoogle Scholar
  3. X.B. Li, Z.R. Zhang, H.J. Schluesener, S.Q. Xu, Role of exosomes in immune regulation. J. Cell. Mol. Med. 10(2), 364–375 (2006)CrossRefGoogle Scholar
  4. A. Bobrie, M. Colombo, G. Raposo, C. Th´ery, Exosome secretion: molecular mechanisms and roles in immune responses. Traffic (Copenhagen, Denmark). 12(12), 1659–68 (2011)CrossRefGoogle Scholar
  5. V. Muralidharan-Chari, J.W. Clancy, A.0. Sedgwick, C. D’Souza- Schorey, Microvesicles: mediators of extracellular communication during cancer progression. J. Cell Sci. 123(Pt 10), 1603–11 (2010)CrossRefGoogle Scholar
  6. R.M. Johnstone, M. Adam, J.R. Hammond, L. Orr, C. Turbide, Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 262(19), 9412–9420 (1987)Google Scholar
  7. H. Peinado, S. Lavotshkin, D. Lyden, The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin. Cancer Biol. 21(2), 139–46 (2011)CrossRefGoogle Scholar
  8. C. D’Souza-Schorey, J.W. Clancy, Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev. 26(12), 1287–99 (2012)CrossRefGoogle Scholar
  9. S. Keller, M.P. Sanderson, A. Stoeck, P. Altevogt, Exosomes: from biogenesis and secretion to biological function. Immunol. Lett. 107, 102–108 (2006)CrossRefGoogle Scholar
  10. G. van Niel, I. Porto-Carreiro, S. Simoes, G. Raposo, Exosomes: a common pathway for a specialized function. J. Biochem. 140(1), 13–21 (2006)CrossRefGoogle Scholar
  11. D.J. Burgess, Glioblastoma: Microvesicles as major biomarkers. Nat. Rev. Cancer. 13(1), 8 (2013)Google Scholar
  12. J. Skog, T. Würdinger, S. van Rijn, D.H. Meijer, L. Gainche, M. Sena Esteves, W.T. Curry, B.S. Carter, A.M. Krichevsky, X.O. Breakefield, Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10(12), 1470–6 (2008)CrossRefGoogle Scholar
  13. W. Wang, H. Li, Z. Yan, J. Shenghua, Peripheral blood microvesicles are potential biomarkers for hepatocellular carcinoma - Cancer Biomarkers - Volume 13, Number 5 / 2013 - IOS Press. Cancer Biomarkers. 13(5), 351–357 (2013)Google Scholar
  14. J. Nilsson, J. Skog, A. Nordstrand, V. Baranov, L. Mincheva-Nilsson, X.O. Breakefield, A.Widmark, Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br. J. Cancer. 100(10), 1603–7 (2009)CrossRefGoogle Scholar
  15. C. Grange, M. Tapparo, F. Collino, L. Vitillo, C. Damasco, M.C. Deregibus, C. Tetta, B. Bussolati, G. Camussi, Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 71(15), 5346–56 (2011)CrossRefGoogle Scholar
  16. S. Mathivanan, R.J. Simpson, ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 9(21), 4997–5000 (2009)CrossRefGoogle Scholar
  17. E. Cocucci, G. Racchetti, J. Meldolesi, Shedding microvesicles: artefacts no more. Trends Cell Biol. 19(2), 43–51 (2009)CrossRefGoogle Scholar
  18. M.A. Antonyak, K.F. Wilson, R.A. Cerione, R(h)oads to microvesicles. Small GTPases. 3(4), 219–24 (2012)CrossRefGoogle Scholar
  19. B. Li, M.A. Antonyak, J. Zhang, R.A. Cerione, RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene. 31(45), 4740–9 (2012)CrossRefGoogle Scholar
  20. K. Al-Nedawi, B. Meehan, J. Micallef, V. Lhotak, L. May, A. Guha, J. Rak, Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10(5), 619–24 (2008)CrossRefGoogle Scholar
  21. K. Al-Nedawi, B. Meehan, J. Rak, Microvesicles: messengers and mediators of tumor progression. Cell Cycle. 8, 2014–2018 (2009)CrossRefGoogle Scholar
  22. D. Di Vizio, M. Morello, A.C. Dudley, P.W. Schow, R.M. Adam, S. Morley, D. Mulholland, M. Rotinen, M.H. Hager, L. Insabato, M.A. Moses, F. Demichelis, M.P. Lisanti, W. Hong, M. Klagsbrun, N.A. Bhowmick, M.A. Rubin, C. D’Souza-Schorey, M.R. Freeman, Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am. J. Pathol. 181(5), 1573–84 (2012)CrossRefGoogle Scholar
  23. S.H. Kim, N. Bianco, R. Menon, E.R. Lechman, W.J. Shufesky, A.E. Morelli, P.D. Robbins, Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Molecular therapy: The Journal of the American Society of Gene Therapy. 13(2), 289–300 (2006)CrossRefGoogle Scholar
  24. R. Valenti, V. Huber, M. Iero, P. Filipazzi, G. Parmiani, L. Rivoltini, Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res. 67(7), 2912–2915 (2007)CrossRefGoogle Scholar
  25. L. Mincheva-Nilsson, V. Baranov, The role of placental exosomes in reproduction. Am. J. Reprod. Immunol. (New York, N.Y. : 1989). 63(6), 520–33 (2010)CrossRefGoogle Scholar
  26. R.A. Dragovic, C. Gardiner, A.S. Brooks, D.S. Tannetta, D.J.P. Ferguson, P. Hole, B. Carr, C.W.G. Redman, A.L. Harris, P.J. Dobson, P. Harrison, I.L. Sargent, Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine: Nanotechnology, Biology and Medicine. 7(6), 780–8 (2011)CrossRefGoogle Scholar
  27. B. György, T.G. Szabó, M. Pásztói, Z. Pál, P. Misják, B. Aradi, V. László, E. Pállinger, E. Pap, A. Kittel, G. Nagy, A. Falus, E.I. Buzás, Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci.: CMLS. 68(16), 2667–88 (2011)CrossRefGoogle Scholar
  28. E. van der Pol, A.N. Böing, P. Harrison, A. Sturk, R. Nieuwland, Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 64(3), 676–705 (2012)CrossRefGoogle Scholar
  29. J.S. Schorey, S. Bhatnagar, Exosome function: from tumor immunology to pathogen biology. Traffic. 9, 871–881 (2008)CrossRefGoogle Scholar
  30. E. van der Pol, A.G. Hoekstra, A. Sturk, C. Otto, T.G. van Leeuwen, R. Nieuwland, Optical and non-optical methods for detection and characterization of microparticles and exosomes. J. Thromb. Haemost. : JTH. 8(12), 2596–607 (2010)CrossRefGoogle Scholar
  31. D.-S. Choi, J.-M. Lee, G.W. Park, H.-W. Lim, J.Y. Bang, Y.-K. Kim, K.-H. Kwon, J.K. Ho, K.P. Kim, Y.S. Gho, Proteomic analysis of microvesicles derived from human colorectal cancer cells. J. Proteome Res. 6(12), 4646–55 (2007)CrossRefGoogle Scholar
  32. S.M. Santana, MA. Antonyak, R.A. Cerione, B.J. Kirby, Cancerous epithelial cell lines shed extracellular vesicles with a bimodal size distribution that is sensitive to glutamine inhibition. Phys. Biol., submitted (2014)Google Scholar
  33. M. Jorgensen, R. Baek, S. Pedersen, E.K.L. Sondergaard, S.R. Kristensen, K. Varming, Extracellular vesicle (EV) array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping. Journal Extracellular Vesicles, 2 (2013)Google Scholar
  34. R. Wubbolts, S.L. Rachel, P.T.M. Veenhuizen, G. Schwarzmann, W. Mobius, J. Hoernschemeyer, J.-W. Slot, H.J. Geuze, W. Stoorvogel, Proteomic and biochemical analyses of human b cell-derived exosomes: potential implications for their function and multivesicular body formation. J. Biol. Chem. 278(13), 10963–10972 (2003)CrossRefGoogle Scholar
  35. R.J. Simpson, J.W.E. Lim, R.L. Moritz, S. Mathivanan, Exosomes: proteomic insights and diagnostic potential. Expert Review of Proteomics. 6(3), 267–83 (2009)CrossRefGoogle Scholar
  36. A.S. Lawrie, A. Albanyan, R.A. Cardigan, I.J. Mackie, P. Harrison, Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox Sanguinis. 96(3), 206–12 (2009)CrossRefGoogle Scholar
  37. S. Mathivanan, J.W.E. Lim, B.J. Tauro, H. Ji, R.L. Moritz, R.J. Simpson, Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Molecular & cellular Proteomics: MCP. 9(2), 197–208 (2010)CrossRefGoogle Scholar
  38. L.V. Coren, T. Shatzer, D.E. Ott, CD45 immunoaffinity depletion of vesicles from Jurkat T cells demonstrates that exosomes contain CD45: no evidence for a distinct exosome/HIV-1 budding pathway. Retrovirology. 5(1), 64 (2008)CrossRefGoogle Scholar
  39. B.J. Tauro, D.W. Greening, R.A. Mathias, H. Ji, S. Mathivanan, A.M. Scott, R.J. Simpson, Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods (San Diego, Calif.) 56(2), 293–304 (2012)CrossRefGoogle Scholar
  40. S. Mathivanan, H. Ji, R.J. Simpson, Exosomes: extracellular organelles important in intercellular communication. J. Proteome. 73, 1907–1920 (2010)CrossRefGoogle Scholar
  41. D.W. Inglis, J.A. Davis, R.H. Austin, J.C. Sturm, Critical particle size for fractionation by deterministic lateral displacement. Lab on a Chip. 6(5), 655–8 (2006)CrossRefGoogle Scholar
  42. L.R. Huang, E.C. Cox, R.H. Austin, J.C. Sturm, Continuous particle separation through deterministic lateral displacement. Science. 304, 987–990 (2004)CrossRefGoogle Scholar
  43. N. Pamme, Continuous flow separations in microfluidic devices. Lab on a Chip. 7(12), 1644 (2007)CrossRefGoogle Scholar
  44. J.P. Smith, A.C. Barbati, S.M. Santana, J.P. Gleghorn, B.J. Kirby, Microfluidic transport in microdevices for rare cell capture. Electrophoresis. 33(21), 3133–3142 (2012)CrossRefGoogle Scholar
  45. J.P. Gleghorn, J.P. Smith, B.J. Kirby, Transport and collision dynamics in periodic asymmetric obstacle arrays: Rational design of microfluidic rare-cell immunocapture devices. Phys. Rev. E. 88(3), 032136 (2013)CrossRefGoogle Scholar
  46. M. Heller, H. Bruus, A theoretical analysis of the resolution due to diffusion and size dispersion of particles in deterministic lateral displacement devices. J. Micromech. Microeng. 18(7), 075030 (2008)CrossRefGoogle Scholar
  47. K. Loutherback, K.S. Chou, J. Newman, J. Puchalla, R.H. Austin, J.C. Sturm, Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid. Nanofluid. 9(6), 1143–1149 (2010)CrossRefGoogle Scholar
  48. E.D. Pratt, C. Huang, B.G. Hawkins, J.P. Gleghorn, B.J. Kirby, Rare cell capture in microfluidic devices. Chem. Eng. Sci. 66, 1508–1522 (2011)CrossRefGoogle Scholar
  49. Y. Li, C. Dalton, J.H. Crabtree, G. Nilsson, K.V. Kaler, Continuous dielectrophoretic cell separation microfluidic device. Lab on a chip. 7(2), 239–48 (2007)CrossRefGoogle Scholar
  50. B.G. Hawkins, A.E. Smith, Y.A. Syed, B.J. Kirby, Continuous-flow particle separation by 3D insulative dielectrophoresis using coherently shaped, dc-biased, ac electric fields. Anal. Chem. 79, 7291–7300 (2007)CrossRefGoogle Scholar
  51. J.V. Green, M. Radisic, S.K. Murthy, Deterministic lateral displacement as a means to enrich large cells for tissue engineering. Anal. Chem. 81(21), 9178–82 (2009)CrossRefGoogle Scholar
  52. S.H. Holm, J.P. Beech, M.P. Barrett, J.O. Tegenfeldt, Separation of parasites from human blood using deterministic lateral displacement. Lab on a chip. 11(7), 1326–32 (2011)CrossRefGoogle Scholar
  53. D.W. Inglis, N. Herman, G. Vesey, Highly accurate deterministic lateral displacement device and its application to purification of fungal spores. Biomicrofluidics. 4(2), 024109 (2010)CrossRefGoogle Scholar
  54. J.P. Gleghorn, E.D. Pratt, D. Denning, H. Liu, N.H. Bander, S.T. Tagawa, D.M. Nanus, P.A. Giannakakou, B.J. Kirby, Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab on a chip. 10, 27–29 (2010)CrossRefGoogle Scholar
  55. G. Taraboletti, S. D’Ascenzo, I. Giusti, D. Marchetti, P. Borsotti, D. Millimaggi, R. Giavazzi, A. Pavan, V. Dolo, Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. Neoplasia (New York, N.Y.) 8(2), 96–103 (2006)CrossRefGoogle Scholar
  56. M. Skobe, T. Hawighorst, D.G. Jackson, R. Prevo, L. Janes, P. Velasco, L. Riccardi, K. Alitalo, K. Claffey, M. Detmar, Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 7(2), 192–8 (2001)CrossRefGoogle Scholar
  57. S.A. Stacker, C. Caesar, M.E. Baldwin, G.E. Thornton, R.A. Williams, R. Prevo, D.G. Jackson, S. Nishikawa, H. Kubo, M.G. Achen, VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat. Med. 7(2), 186–91 (2001)CrossRefGoogle Scholar
  58. S.-I. Ishigami, S. Arii, M. Furutani, M. Niwano, T. Harada, M. Mizumoto, A. Mori, H. Onodera, M. Imamura, Predictive value of vascular endothelial growth factor (VEGF) in metastasis and prognosis of human colorectal cancer. Br. J. Cancer. 78(10), 1379–1384 (1998)CrossRefGoogle Scholar
  59. A. Yuan, E.L. Farber, A.L. Rapoport, D. Tejada, R. Deniskin, N.B. Akhmedov, D.B. Farber, Transfer of microRNAs by embryonic stem cell microvesicles. PloS one. 4 (3), 4722 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Steven M. Santana
    • 1
  • Marc A. Antonyak
    • 2
  • Richard A. Cerione
    • 2
  • Brian J. Kirby
    • 1
  1. 1.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA
  2. 2.Department of Molecular Medicine, Vet Medical CenterRoom C3, Cornell UniversityIthacaUSA

Personalised recommendations