Biomedical Microdevices

, Volume 16, Issue 4, pp 501–508 | Cite as

Microtubule shuttles on kinesin-coated glass micro-wire tracks

  • Kyongwan Kim
  • Andrew L. Liao
  • Aurélien Sikora
  • Daniel Oliveira
  • Hikaru Nakazawa
  • Mitsuo Umetsu
  • Izumi Kumagai
  • Tadafumi Adschiri
  • Wonmuk Hwang
  • Winfried TeizerEmail author


Gliding of microtubule filaments on surfaces coated with the motor protein kinesin has potential applications for nano-scale devices. The ability to guide the gliding direction in three dimensions allows the fabrication of tracks of arbitrary geometry in space. Here, we achieve this by using kinesin-coated glass wires of micrometer diameter range. Unlike previous methods in which the guiding tracks are fixed on flat two-dimensional surfaces, the flexibility of glass wires in shape and size facilitates building in-vitro devices that have deformable tracks.


Microtubule Kinesin Molecular motility Glass micro-wire Lab-on-a-chip Molecular delivery 



We gratefully acknowledge support from the World Premier International Research Center Initiative (WPI), MEXT, Japan. We would like to thank Dr. Hideaki Sanada for generously providing the kinesin plasmid.

Supplementary material


A glass wire decorated by quantum dots in a buffer solution (Images ~100 μm × 100 μm in size). (MPG 2056 kb)


Microtubules gliding on the kinesin coated glass wire. The focus was adjusted occasionally in each movie (Images ~50 μm × 50 μm in size, actual elapsed time 4 min 32 s). (MPG 366 kb)

(MPG 362 kb)

(MPG 396 kb)

(MPG 414 kb)

(MPG 454 kb)

(MPG 670 kb)

(MPG 656 kb)

(MPG 280 kb)

(MPG 328 kb)

(MPG 550 kb)


Microtubules gliding on the kinesin coated surface of the coverslip (Images ~50 μm × 50 μm in size, actual elapsed time 4 min 32 s). (MPG 1438 kb)

SM13 and SM14

Microtubules gliding towards two separate chip surfaces along the kinesin coated glass wire bridges (Images ~50 μm × 50 μm in size, time tagged on the images (min:sec)). (MPG 149 kb)

(MPG 1292 kb)


  1. A. Agarwal, H. Hess, Prog. Polym. Sci. 35, 252 (2010)CrossRefGoogle Scholar
  2. P. Bieling, I.A. Telley, J. Piehler, T. Surrey, EMBO Rep. 9, 1121 (2008)CrossRefGoogle Scholar
  3. K.M. Brendza, D.J. Rose, S.P. Gilbert, W.M. Saxton, J. Biol. Chem. 274, 31506 (1999)CrossRefGoogle Scholar
  4. C. Brunner, C. Wahnes, V. Vogel, Lab Chip 7, 1263 (2007)CrossRefGoogle Scholar
  5. K.-E. Byun, K. Heo, S. Shim, H.-J. Choi, S. Hong, Small 5, 2659 (2009)CrossRefGoogle Scholar
  6. L.J. Cheng, M.T. Kao, E. Meyhofer, L.J. Guo, Small 1, 409 (2005)CrossRefGoogle Scholar
  7. D. Chretien, S.D. Fuller, E. Karsenti, J. Cell Biol. 129, 1311 (1995)CrossRefGoogle Scholar
  8. J. Clemmens, H. Hess, R. Lipscomb, Y. Hanein, K.F. Böhringer, C.M. Matzke, G.D. Bachand, B.C. Bunker, V. Vogel, Langmuir 19, 10967 (2003)CrossRefGoogle Scholar
  9. S.A. Cohn, A.L. Ingold, J.M. Scholey, J. Biol. Chem. 264, 4290 (1989)Google Scholar
  10. D.L. Coy, M. Wagenbach, J. Howard, J. Biol. Chem. 274, 3667 (1999)CrossRefGoogle Scholar
  11. T.J.A. Craddock, J.A. Tuszynski, D. Chopra, N. Casey, L.E. Goldstein, S.R. Hameroff, R.E. Tanzi, PLoS One 7, e33552 (2012)CrossRefGoogle Scholar
  12. A. Desai, T.J. Mitchison, Annu. Rev. Cell Dev. Biol. 13, 83 (1997)CrossRefGoogle Scholar
  13. H.H. Gerdes, R.N. Carvalho, Curr. Opin. Cell Biol. 20, 470 (2008)CrossRefGoogle Scholar
  14. F. Gibbons, J.F. Chauwin, M. Desposito, J.V. Jose, Biophys. J. 80, 2515 (2001)CrossRefGoogle Scholar
  15. B.J. Grant, D.M. Gheorghe, W. Zheng, M. Alonso, G. Huber, M. Dlugosz, J.A. McCammon, R.A. Cross, PLoS Biol. 9, e1001207 (2011)CrossRefGoogle Scholar
  16. H. Hess, J. Clemmens, D. Qin, J. Howard, V. Vogel, Nano Lett. 1, 235 (2001)CrossRefGoogle Scholar
  17. Y. Hiratsuka, T. Tads, K. Oiwa, T. Kanayama, T.Q.P. Uyeda, Biophys. J. 81, 1555 (2001)CrossRefGoogle Scholar
  18. N. Hirokawa, Y. Noda, Y. Tanaka, S. Niwa, Nat. Rev. Mol. Cell Biol. 10, 682 (2009)CrossRefGoogle Scholar
  19. J. Howard, A.J. Hudspeth, R.D. Vale, Nature 342, 154 (1989)CrossRefGoogle Scholar
  20. W. Hwang, M.J. Lang, Cell Biochem. Biophys. 54, 11 (2009)CrossRefGoogle Scholar
  21. W. Hwang, M.J. Lang, M. Karplus, Structure 16, 62 (2008)CrossRefGoogle Scholar
  22. F. Kozielski, S. Sack, A. Marx, M. Thormählen, E. Schönbrunn, V. Biou, A. Thompson, E.M. Mandelkow, E. Mandelkow, Cell 91, 985 (1997)CrossRefGoogle Scholar
  23. S.K. Lakkaraju, W. Hwang, Biophys. J. 101, 1105 (2011)CrossRefGoogle Scholar
  24. L. Liu, E. Tuzel, J.L. Ross, J. Phys. Condens. Matter 23, 374104 (2011)CrossRefGoogle Scholar
  25. A. Maloney, L.J. Herskowitz, S.J. Koch, PLoS One 6, e19522 (2011)CrossRefGoogle Scholar
  26. A. Månsson, J. Muscle Res. Cell Motil. 33, 219 (2012)CrossRefGoogle Scholar
  27. J.R. McIntosh, M.I. Molodtsov, F.I. Ataullakhanov, Q. Rev. Biophys. 45, 147 (2012)CrossRefGoogle Scholar
  28. G. Muthukrishnan, Y. Zhang, S. Shastry, W.O. Hancock, Curr. Biol. 19, 442 (2009)CrossRefGoogle Scholar
  29. F.J. Nedelec, T. Surrey, A.C. Maggs, S. Leibler, Nature 389, 305 (1997)CrossRefGoogle Scholar
  30. J.A. Noel, W. Teizer, W. Hwang, ACS Nano 3, 1938 (2009)CrossRefGoogle Scholar
  31. E. Nogales, M. Whittaker, R.A. Milligan, K.H. Downing, Cell 96, 79 (1999)CrossRefGoogle Scholar
  32. D. Oliveira, D.-M. Kim, M. Umetsu, I. Kumagai, T. Adschiri, W. Teizer, J. Appl. Phys. 112, 124703 (2012)CrossRefGoogle Scholar
  33. T. Ozeki, V. Verma, M. Uppalapati, Y. Suzuki, M. Nakamura, J.M. Catchmark, W.O. Hancock, Biophys. J. 96, 3305 (2009)CrossRefGoogle Scholar
  34. O. Rath, F. Kozielski, Nat. Rev. 12, 527 (2012)CrossRefGoogle Scholar
  35. V. Schaller, C. Weber, C. Semmrich, E. Frey, A.R. Bausch, Nature 467, 73 (2010)CrossRefGoogle Scholar
  36. M.J. Schnitzer, S.M. Block, Nature 388, 386 (1997)CrossRefGoogle Scholar
  37. A. Sikora, D. Oliveira, K. Kim, L.A. Liao, M. Umetsu, I. Kumagai, T. Adschiri, W. Hwang, W. Teizer, Chem. Lett. 41, 1215 (2012)CrossRefGoogle Scholar
  38. A. Sikora, J. Ramón-Azcón, K. Kim, K. Reaves, H. Nakazawa, M. Umetsu, I. Kumagai, T. Adschiri, H. Shiku, T. Matsue, W. Hwang, W. Teizer, Nano Lett. 14, 876 (2014)Google Scholar
  39. Y. Sumino, K.H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chaté, K. Oiwa, Nature 483, 448 (2012)CrossRefGoogle Scholar
  40. L. ten Sietoff, M. Lard, J. Generosi, H.S. Andersson, H. Linke, A. Månsson, Nano Lett. 14, 737 (2014)Google Scholar
  41. L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, Nature 426, 816 (2003)CrossRefGoogle Scholar
  42. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, Z. Ye, Opt. Express 14, 82 (2006)CrossRefGoogle Scholar
  43. R.D. Vale, Cell 112, 467 (2003)CrossRefGoogle Scholar
  44. R.D. Vale, R.A. Milligan, Science 288, 88 (2000)CrossRefGoogle Scholar
  45. R.D. Vale, T.S. Reese, M.P. Sheetz, Cell 42, 39–50 (1985a)CrossRefGoogle Scholar
  46. R.D. Vale, B.J. Schnapp, T.S. Reese, M.P. Sheetz, Cell 40, 559 (1985b)CrossRefGoogle Scholar
  47. M.G.L. van den Heuvel, C. Dekker, Science 317, 333 (2007)CrossRefGoogle Scholar
  48. M.G.L. van den Heuvel, M.P. de Graaff, C. Dekker, Science 312, 910 (2006)CrossRefGoogle Scholar
  49. T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Shoches, Phys. Rev. Lett. 75, 1226 (1995)CrossRefGoogle Scholar
  50. M. von Delius, D.A. Leigh, Chem. Soc. Rev. 40, 3656 (2011)CrossRefGoogle Scholar
  51. R.C. Weisenberg, Science 177, 1104 (1972)CrossRefGoogle Scholar
  52. R. Yokokawa, Y. Yoshida, S. Takeuchi, T. Kon, H. Fujita, Nanotechnology 17, 289 (2006)CrossRefGoogle Scholar
  53. J. Zhou, P. Giannakakou, Curr. Med. Chem. 5, 65 (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kyongwan Kim
    • 1
  • Andrew L. Liao
    • 1
    • 2
  • Aurélien Sikora
    • 1
  • Daniel Oliveira
    • 1
  • Hikaru Nakazawa
    • 3
  • Mitsuo Umetsu
    • 1
    • 3
  • Izumi Kumagai
    • 3
  • Tadafumi Adschiri
    • 1
  • Wonmuk Hwang
    • 2
    • 4
    • 5
  • Winfried Teizer
    • 1
    • 2
    • 6
    Email author
  1. 1.WPI-Advanced Institute for Materials Research (AIMR)Tohoku UniversitySendaiJapan
  2. 2.Materials Science and EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.Department of Biomolecular Engineering, Graduate School of EngineeringTohoku UniversitySendaiJapan
  4. 4.Department of Biomedical EngineeringTexas A&M UniversityCollege StationUSA
  5. 5.School of Computational SciencesKorea Institute for Advanced StudySeoulSouth Korea
  6. 6.Department of Physics and AstronomyTexas A&M UniversityCollege StationUSA

Personalised recommendations