Biomedical Microdevices

, Volume 16, Issue 3, pp 459–463 | Cite as

Control and gating of kinesin-microtubule motility on electrically heated thermo-chips

  • Laurence Ramsey
  • Viktor Schroeder
  • Harm van Zalinge
  • Michael Berndt
  • Till Korten
  • Stefan Diez
  • Dan V. Nicolau
Article

Abstract

First lab-on-chip devices based on active transport by biomolecular motors have been demonstrated for basic detection and sorting applications. However, to fully employ the advantages of such hybrid nanotechnology, versatile spatial and temporal control mechanisms are required. Using a thermo-responsive polymer, we demonstrated a temperature controlled gate that either allows or disallows the passing of microtubules through a topographically defined channel. The gate is addressed by a narrow gold wire, which acts as a local heating element. It is shown that the electrical current flowing through a narrow gold channel can control the local temperature and as a result the conformation of the polymer. This is the first demonstration of a spatially addressable gate for microtubule motility which is a key element of nanodevices based on biomolecular motors.

Keywords

Nanodevices Molecular motors Thermo-responsive polymer Poly(N-isopropylacrylamide) Microtubules Kinesin 

Supplementary material

10544_2014_9848_MOESM1_ESM.avi (6.3 mb)
ESM 1(AVI 6425 kb)

References

  1. R. Bunk, M. Sundberg, A. Mansson, I.A. Nicholls, P. Omling, S. Tagerud, L. Montelius, Nanotechnology 16, 710–717 (2005)CrossRefGoogle Scholar
  2. K.L. Christman, V.D. Enriquez-Rios, H.D. Maynard, Soft Matter 2, 928–939 (2006)CrossRefGoogle Scholar
  3. J. Clemmens, H. Hess, R. Lipscomb, Y. Hanein, K.F. Böhringer, C.M. Matzke, G.D. Bachand, B.C. Bunker, V. Vogel, Langmuir 19, 10967–10974 (2003)CrossRefGoogle Scholar
  4. S.A. Cohn, A.L. Ingold, J.M. Scholey, J. Biol. Chem. 264, 4290–4297 (1989)Google Scholar
  5. D.L. Coy, M. Wagenbach, J. Howard, J. Biol. Chem. 274, 3667–3671 (1999)CrossRefGoogle Scholar
  6. S.H. Diez, J. Howard, Physique au Canada 65, 7–12 (2009)Google Scholar
  7. T. Fischer, A. Agarwal, H. Hess, Nat. Nanotechnol. 4, 162–166 (2009)CrossRefGoogle Scholar
  8. F. Fulga, D.V. Nicolau, Integr. Biol. 1, 150–169 (2009)CrossRefGoogle Scholar
  9. K.L. Hanson, G. Solana, D.V. Nicolau, 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology (2005), pp. 205–206.Google Scholar
  10. H. Hess, in Engineering Applications of Biomolecular Motors, ed. by M.L. Yarmush, J.S. Duncan and M.L. Gray (Annual Reviews, Palo Alto, 2011), p. 429–450Google Scholar
  11. J. Howard, Mechanics of motor proteins and the cytoskeleton (Sinauer Associates, Inc., Sunderland Massachusetts, 2001)Google Scholar
  12. J. Howard, A.J. Hudspeth, R.D. Vale, Nature 342, 154–158 (1989)CrossRefGoogle Scholar
  13. D.L. Huber, R.P. Manginell, M.A. Samara, B.I. Kim, B.C. Bunker, Science 301, 352–354 (2003)CrossRefGoogle Scholar
  14. A.J. Hunt, F. Gittes, J. Howard, Biophys. J. 67, 766–781 (1994)CrossRefGoogle Scholar
  15. L. Ionov, M. Stamm, S. Diez, Nano Lett. 6, 1982–1987 (2006)CrossRefGoogle Scholar
  16. J. Kerssemakers, J. Howard, H. Hess, S. Diez, Proc. Natl. Acad. Sci. U. S. A. 103, 15812–15817 (2006)CrossRefGoogle Scholar
  17. T. Korten, S. Diez, Lab Chip 8, 1441–1447 (2008)CrossRefGoogle Scholar
  18. T. Korten, A. Mansson, S. Diez, Curr. Opin. Biotechnol. 21, 477–488 (2010)CrossRefGoogle Scholar
  19. T. Korten, W. Birnbaum, D. Kuckling, S. Diez, Nano Lett. 12, 348–353 (2012)CrossRefGoogle Scholar
  20. S.J. Kron, J.A. Spudich, Proc. Natl. Acad. Sci. U. S. A. 83, 6272–6276 (1986)CrossRefGoogle Scholar
  21. K.B. Lee, S.J. Park, C.A. Mirkin, J.C. Smith, M. Mrksich, Science 295, 1702–1705 (2002)CrossRefGoogle Scholar
  22. N. Nath, A. Chilkoti, Adv. Mater. 14, 1243 (2002)CrossRefGoogle Scholar
  23. D.V. Nicolau, H. Suzuki, S. Mashiko, T. Taguchi, S. Yoshikawa, Biophys. J. 77, 1126–1134 (1999)CrossRefGoogle Scholar
  24. D.V. Nicolau, G. Solana, M. Kekic, F. Fulga, C. Mahanivong, J. Wright, C.G. dos Remedios, Langmuir 23, 10846–10854 (2007)CrossRefGoogle Scholar
  25. D. Riveline, A. Ott, F. Julicher, D.A. Winkelmann, O. Cardoso, J.J. Lacapere, S. Magnusdottir, J.L. Viovy, L. Gorre-Talini, J. Prost, Eur. Biophys. J. Biophys. Lett. 27, 403–408 (1998)CrossRefGoogle Scholar
  26. V. Schroeder, T. Korten, H. Linke, S. Diez,I. Maximov, Nano Lett. (2013)Google Scholar
  27. T.L. Sun, G.J. Wang, L. Feng, B.Q. Liu, Y.M. Ma, L. Jiang, D.B. Zhu, Angew. Chem. Int. Ed. 43, 357–360 (2004)CrossRefGoogle Scholar
  28. M.G.L. van den Heuvel, C.T. Butcher, S.G. Lemay, S. Diez, C. Dekker, Nano Lett. 5, 235–241 (2005)CrossRefGoogle Scholar
  29. M.G.L. van den Heuvel, M.P. De Graaff, C. Dekker, Science 312, 910–914 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Laurence Ramsey
    • 1
  • Viktor Schroeder
    • 2
    • 3
    • 4
  • Harm van Zalinge
    • 1
  • Michael Berndt
    • 3
    • 5
  • Till Korten
    • 2
    • 3
  • Stefan Diez
    • 2
    • 3
  • Dan V. Nicolau
    • 1
    • 6
  1. 1.Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolUK
  2. 2.B CUBE - Center for Molecular BioengineeringTechnische Universität DresdenDresdenGermany
  3. 3.Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
  4. 4.Institute for X-Ray Physics and Courant Research Centre “Nano-Spectroscopy and X-Ray Imaging”Georg-August-Universität GöttingenGöttingenGermany
  5. 5.Lumics GMBHBerlinGermany
  6. 6.Department of Bioengineering, School of EngineeringMcGill UniversityMontrealCanada

Personalised recommendations