Advertisement

Biomedical Microdevices

, Volume 16, Issue 2, pp 245–253 | Cite as

Oil–water biphasic parallel flow for the precise patterning of metals and cells

  • Xuan Mu
  • Qionglin LiangEmail author
  • Jun Zhou
  • Kangning Ren
  • Ping Hu
  • Yiming Wang
  • Zhi ZhengEmail author
  • Guoan LuoEmail author
Article

Abstract

Fluidic patterning is a convenient and versatile tool for the patterning of materials, cells and microstructures on surface and in microchannels. However, its performance is usually limited by transverse diffusion between fluid streams. It would blur the boundary and deteriorate the precision of patterns. In this paper, we adopted geometric confinement to generate biphasic parallel flow that is constituted of oil and water. Since there is minimum transverse diffusion in biphasic parallel flow, the performance of fluid patterning is expected to be improved. The results show that the metal (Silver and Chromium) patterns have distinct boundary and well-controlled geometry in comparison with that by conventional laminar flow patterning. Furthermore, the high biocompatibility of oil phase (perfluorodecalin, PFD) enables the precise patterning of viable bacteria inside microchannels. Our work demonstrated a new route of using biphasic parallel flow to patterning, which would serve wide applications in prototyping and research settings.

Keywords

Microfluidics Patterning Metal Bacteria Biphasic flow Perfluorodecalin 

Notes

Acknowledgments

This work was supported by National Science and Technology Major Project of China (2013ZX09507005), National Natural Science Foundation of China (21305162, 21235004 and 21175080), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (to Q. L.). The authors thank Prof. Xingyu Jiang in National Center of Nanoscience and Technology for providing fluorescence microscope, and Prof. Bo Zheng at Chinese University of HongKong, Prof. Bo Yao at Zhejiang University and Prof. Ho Cheung Shum at The University of HongKong for fruitful discussions.

Supplementary material

10544_2013_9828_MOESM1_ESM.doc (948 kb)
ESM 1 (DOC 948 kb)

Video (MPG 4022 kb)

References

  1. E. Berthier, J. Warrick, B. Casavant, D.J. Beebe, Pipette-friendly laminar flow patterning for cell-based assays. Lab Chip 11, 2060–2065 (2011)CrossRefGoogle Scholar
  2. A. Bransky, N. Korin, S. Levenberg, Experimental and theoretical study of selective protein deposition using focused micro laminar flows. Biomed. Microdevices 10, 421–428 (2008)CrossRefGoogle Scholar
  3. H.J. Busscher, H.C. van der Mei, How do bacteria know they are on a surface and regulate their response to an adhering state? PLoS Pathog. 8, e1002440 (2012)CrossRefGoogle Scholar
  4. L. Chen, G. Yang, S.T. Wang, Air-grid surface patterning provided by superhydrophobic surfaces. Small 8, 962–965 (2012)CrossRefGoogle Scholar
  5. S. Cho, S.J. Park, S.Y. Ko, J.O. Park, S. Park, Development of bacteria-based microrobot using biocompatible poly(ethylene glycol). Biomed. Microdevices 14, 1019–1025 (2012)CrossRefGoogle Scholar
  6. J. Clausell-Tormos, D. Lieber, J.C. Baret, A. El-Harrak, O.J. Miller, L. Frenz, J. Blouwolff, K.J. Humphry, S. Koster, H. Duan, C. Holtze, D.A. Weitz, A.D. Griffiths, C.A. Merten, Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem. Biol. 15, 427–437 (2008)CrossRefGoogle Scholar
  7. R. Dreyfus, P. Tabeling, H. Willaime, Ordered and disordered patterns in two-phase flows in microchannels. Phys. Rev. Lett. 90, 144505 (2003)CrossRefGoogle Scholar
  8. J.P. Frampton, D. Lai, H. Sriram, S. Takayama, Precisely targeted delivery of cells and biomolecules within microchannels using aqueous two-phase systems. Biomed. Microdevices 13, 1043–1051 (2011)CrossRefGoogle Scholar
  9. Y.X. Gao, L.W. Chen, Versatile control of multiphase laminar flow for in-channel microfabrication. Lab Chip 8, 1695–1699 (2008)CrossRefGoogle Scholar
  10. P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up. Lab Chip 6, 437–446 (2006)CrossRefGoogle Scholar
  11. M. Geissler, Y.N. Xia, Patterning: principles and some new developments. Adv. Mater. 16, 1249–1269 (2004)CrossRefGoogle Scholar
  12. Z.Y. Han, W.T. Li, Y.Y. Huang, B. Zheng, Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves. Anal. Chem. 81, 5840–5845 (2009)CrossRefGoogle Scholar
  13. P.Y. He, D. Barthes-Biesel, E. Leclerc, Flow of two immiscible liquids with low viscosity in Y shaped microfluidic systems: effect of geometry. Microfluid. Nanofluid. 9, 293–301 (2010)CrossRefGoogle Scholar
  14. I.T. Horváth, Fluorous biphase chemistry. Acc. Chem. Res. 31, 641–650 (1998)CrossRefGoogle Scholar
  15. P.B. Howell, J.P. Golden, L.R. Hilliard, J.S. Erickson, D.R. Mott, F.S. Ligler, Two simple and rugged designs for creating microfluidic sheath flow. Lab Chip 8, 1097–1103 (2008)CrossRefGoogle Scholar
  16. C.H. Hsieh, C.J.C. Huang, Y.Y. Huang, Patterned pdms based cell array system: a novel method for fast cell array fabrication. Biomed. Microdevices 12, 897–905 (2010)CrossRefGoogle Scholar
  17. X.W. Huang, L. Li, Q. Tu, J.C. Wang, W.M. Liu, X.Q. Wang, L. Ren, J.Y. Wang, On-chip cell migration assay for quantifying the effect of ethanol on Mcf-7 human breast cancer cells. Microfluid. Nanofluid. 10, 1333–1341 (2011)CrossRefGoogle Scholar
  18. K.J. Humphry, A. Ajdari, A. Fernandez-Nieves, H.A. Stone, D.A. Weitz, Suppression of instabilities in multiphase flow by geometric confinement. Phys. Rev. E 79, 056310 (2009)CrossRefGoogle Scholar
  19. R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, G. Whitesides, H.A. Stone, Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl. Phys. Lett. 76, 2376–2378 (2000)CrossRefGoogle Scholar
  20. X.Y. Jiang, D.A. Bruzewicz, A.P. Wong, M. Piel, G.M. Whitesides, Directing cell migration with asymmetric micropatterns. Proc. Natl. Acad. Sci. U. S. A. 102, 975–978 (2005)CrossRefGoogle Scholar
  21. G. Jing, S.F. Perry, S. Tatic-Lucic, Precise cell patterning using cytophobic self-assembled monolayer deposited on top of semi-transparent gold. Biomed. Microdevices 12, 935–948 (2010)CrossRefGoogle Scholar
  22. A.S. Kabalnov, K.N. Makarov, O.V. Shcherbakova, A.N. Nesmeyanov, Solubility of fluorocarbons in water as a key parameter determining fluorocarbon emulsion stability. J. Fluor. Chem. 50, 271–284 (1990)CrossRefGoogle Scholar
  23. P.J.A. Kenis, R.F. Ismagilov, G.M. Whitesides, Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285, 83–85 (1999)CrossRefGoogle Scholar
  24. P.J.A. Kenis, R.F. Ismagilov, S. Takayama, G.M. Whitesides, S.L. Li, H.S. White, Fabrication inside microchannels using fluid flow. Acc. Chem. Res. 33, 841–847 (2000)CrossRefGoogle Scholar
  25. T. Kong, J. Wu, M. To, K. Wai Kwok Yeung, H. Cheung Shum, L. Wang, Droplet based microfluidic fabrication of designer microparticles for encapsulation applications. Biomicrofluidics 6, 034104 (2012)CrossRefGoogle Scholar
  26. J.N. Lee, C. Park, G.M. Whitesides, Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544–6554 (2003)CrossRefGoogle Scholar
  27. L. Li, Y. Nie, X.T. Shi, H.K. Wu, D.T. Ye, H.D. Chen, Partial transfection of cells using laminar flows in microchannels. Biomicrofluidics 5, 036503 (2011)CrossRefGoogle Scholar
  28. D.R. Lide, Crc handbook of chemistry and physics, 86th Edn, 2005–2006 (CRC Press, Boca Raton, 2005), pp. 41–45. Section 16Google Scholar
  29. H.B. Mao, P.S. Cremer, M.D. Manson, A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl. Acad. Sci. U. S. A. 100, 5449–5454 (2003)CrossRefGoogle Scholar
  30. L.F. Mottram, S. Forbes, B.D. Ackley, B.R. Peterson, Hydrophobic analogues of rhodamine B and rhodamine 101: potent fluorescent probes of mitochondria in living C. elegans. Beilstein J. Org. Chem. 8, 2156–2165 (2012)CrossRefGoogle Scholar
  31. X. Mu, Q.L. Liang, P. Hu, K.N. Ren, Y.M. Wang, G.A. Luo, Laminar flow used as “liquid etch mask” in wet chemical etching to generate glass microstructures with an improved aspect ratio. Lab Chip 9, 1994–1996 (2009)CrossRefGoogle Scholar
  32. X. Mu, W. Zheng, J. Sun, W. Zhang, X. Jiang, Microfluidics for manipulating cells. Small 9, 9–21 (2013)CrossRefGoogle Scholar
  33. Z.H. Nie, E. Kumacheva, Patterning surfaces with functional polymers. Nat. Mater. 7, 277–290 (2008)CrossRefGoogle Scholar
  34. L. Peng, M. Yang, S.S. Guo, W. Liu, X.Z. Zhao, The effect of interfacial tension on droplet formation in flow-focusing microfluidic device. Biomed. Microdevices 13, 559–564 (2011)CrossRefGoogle Scholar
  35. T.T. Perkins, D.E. Smith, S. Chu, Single polymer dynamics in an elongational flow. Science 276, 2016–2021 (1997)CrossRefGoogle Scholar
  36. B. Regenberg, U. Kruhne, M. Beyer, L.H. Pedersen, M. Simon, O.R.T. Thomas, J. Nielsen, T. Ahl, Use of laminar flow patterning for miniaturised biochemical assays. Lab Chip 4, 654–657 (2004)CrossRefGoogle Scholar
  37. K.N. Ren, Q.L. Liang, X. Mu, G.A. Luo, Y.M. Wang, Miniaturized high throughput detection system for capillary array electrophoresis on chip with integrated light emitting diode array as addressed ring-shaped light source. Lab Chip 9, 733–736 (2009)CrossRefGoogle Scholar
  38. K. Ren, Y. Chen, H. Wu, New materials for microfluidics in biology. Curr. Opin. Biotechnol. 25, 78–85 (2014)CrossRefGoogle Scholar
  39. A. Sauret, H.C. Shum, Forced generation of simple and double emulsions in all-aqueous systems. Appl. Phys. Lett. 100, 154106 (2012)CrossRefGoogle Scholar
  40. H.C. Shum, Y.J. Zhao, S.H. Kim, D.A. Weitz, Multicompartment polymersomes from double emulsions. Angew. Chem. Int. Edit. 50, 1648–1651 (2011)CrossRefGoogle Scholar
  41. H.C. Shum, J. Varnell, D.A. Weitz, Microfluidic fabrication of water-in-water (W/W) jets and emulsions. Biomicrofluidics 6, 012808 (2012)CrossRefGoogle Scholar
  42. J.R. SooHoo, G.M. Walker, Microfluidic aqueous two phase system for leukocyte concentration from whole blood. Biomed. Microdevices 11, 323–329 (2009)CrossRefGoogle Scholar
  43. J.E. Squires, Artificial blood. Science 295, 1002–1005 (2002)CrossRefGoogle Scholar
  44. T.M. Squires, S.R. Quake, Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005)CrossRefGoogle Scholar
  45. K. Sun, L.S. Song, Y.Y. Xie, D.B. Liu, D. Wang, Z. Wang, W.S. Ma, J.S. Zhu, X.Y. Jiang, Using self-polymerized dopamine to modify the antifouling property of oligo(ethylene glycol) self-assembled monolayers and its application in cell patterning. Langmuir 27, 5709–5712 (2011)CrossRefGoogle Scholar
  46. K. Sun, Y.Y. Xie, D.K. Ye, Y.Y. Zhao, Y. Cui, F. Long, W. Zhang, X.Y. Jiang, Mussel-inspired anchoring for patterning cells using polydopamine. Langmuir 28, 2131–2136 (2012)CrossRefGoogle Scholar
  47. S. Takayama, J.C. McDonald, E. Ostuni, M.N. Liang, P.J.A. Kenis, R.F. Ismagilov, G.M. Whitesides, Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc. Natl. Acad. Sci. U. S. A. 96, 5545–5548 (1999)CrossRefGoogle Scholar
  48. M.W. Toepke, S.H. Brewer, D.M. Vu, K.D. Rector, J.E. Morgan, R.B. Gennis, P.J.A. Kenis, R.B. Dyer, Microfluidic flow-flash: method for investigating protein dynamics. Anal. Chem. 79, 122–128 (2007)CrossRefGoogle Scholar
  49. J. Wang, W.H. Pei, B. Yuan, K. Guo, K. Sun, H.B. Sun, H.D. Chen, An integrated device for patterning cells and selectively detaching. Biomed. Microdevices 14, 471–481 (2012)CrossRefGoogle Scholar
  50. B. Yao, G.A. Luo, X. Feng, W. Wang, L.X. Chen, Y.M. Wang, A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting. Lab Chip 4, 603–607 (2004)CrossRefGoogle Scholar
  51. X. Zhou, L. Lau, W.W.L. Lam, S.W.N. Au, B. Zheng, Nanoliter dispensing method by degassed poly(dimethylsiloxane) microchannels and its application in protein crystallization. Anal. Chem. 79, 4924–4930 (2007)CrossRefGoogle Scholar
  52. W.A. Zisman, Influence of constitution on adhesion. Ind. Eng. Chem. 55, 18–38 (1963)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingPeople’s Republic of China
  2. 2.Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China
  3. 3.College of Chemical and Molecular EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations