Biomedical Microdevices

, Volume 16, Issue 1, pp 79–90 | Cite as

Single-cell analysis of embryoid body heterogeneity using microfluidic trapping array

  • Jenna L. Wilson
  • Shalu Suri
  • Ankur Singh
  • Catherine A. Rivet
  • Hang Lu
  • Todd C. McDevitt
Article

Abstract

The differentiation of pluripotent stem cells as embryoid bodies (EBs) remains a common method for inducing differentiation toward many lineages. However, differentiation via EBs typically yields a significant amount of heterogeneity in the cell population, as most cells differentiate simultaneously toward different lineages, while others remain undifferentiated. Moreover, physical parameters, such as the size of EBs, can modulate the heterogeneity of differentiated phenotypes due to the establishment of nutrient and oxygen gradients. One of the challenges in examining the cellular composition of EBs is the lack of analytical methods that are capable of determining the phenotype of all of the individual cells that comprise a single EB. Therefore, the objective of this work was to examine the ability of a microfluidic cell trapping array to analyze the heterogeneity of cells comprising EBs during the course of early differentiation. The heterogeneity of single cell phenotype on the basis of protein expression of the pluripotent transcription factor OCT-4 was examined for populations of EBs and single EBs of different sizes at distinct stages of differentiation. Results from the cell trap device were compared with flow cytometry and whole mount immunostaining. Additionally, single cells from dissociated pooled EBs or individual EBs were examined separately to discern potential differences in the value or variance of expression between the different methods of analysis. Overall, the analytical method described represents a novel approach for evaluating how heterogeneity is manifested in EB cultures and may be used in the future to assess the kinetics and patterns of differentiation in addition to the loss of pluripotency.

Keywords

Stem cells Embryoid bodies Heterogeneity Microfluidics 

References

  1. F. Antonica, D.F. Kasprzyk, R. Opitz, M. Iacovino, X.-H. Liao, A.M. Dumitrescu, S. Refetoff, K. Peremans, M. Manto, M. Kyba, S. Costagliola, Nature 491, 66 (2012)CrossRefGoogle Scholar
  2. C.L. Bauwens, R. Peerani, S. Niebruegge, K.A. Woodhouse, E. Kumacheva, M. Husain, P.W. Zandstra, Stem Cells 26, 2300 (2008)CrossRefGoogle Scholar
  3. A.M. Bratt-Leal, R.L. Carpenedo, T.C. McDevitt, Biotechnol. Prog. 25, 43 (2009)CrossRefGoogle Scholar
  4. C. Buhlmann, T. Preckel, S. Chan, G. Luedke, M. Valer, J. Biomol. Tech. 14, 119 (2003)Google Scholar
  5. D.G. Buschke, D.J. Hei, K.W. Eliceiri, B.M. Ogle, in Stem Cell-Based Tissue Repair, ed. by R. Gorodetsky (Royal Society of Chemistry, London, 2010), pp. 55–140Google Scholar
  6. R.L. Carpenedo, C.Y. Sargent, T.C. McDevitt, Stem Cells 25, 2224 (2007)CrossRefGoogle Scholar
  7. C. Chazaud, Y. Yamanaka, T. Pawson, J. Rossant, Dev. Cell 10, 615 (2006)CrossRefGoogle Scholar
  8. Y.Y. Choi, B.G. Chung, D.H. Lee, A. Khademhosseini, J.-H. Kim, S.-H. Lee, Biomaterials 31, 4296 (2010)CrossRefGoogle Scholar
  9. K. Chung, C.A. Rivet, M.L. Kemp, H. Lu, Anal. Chem. 83, 7044 (2011)CrossRefGoogle Scholar
  10. K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A.S. Andalman, T.J. Davidson, J.J. Mirzabekov, K.A. Zalocusky, J. Mattis, A.K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V.Gradinaru, K. Deisseroth, Nature 497, 332 (2013)Google Scholar
  11. S. Cui, Y. Liu, W. Wang, Y. Sun, Y. Fan, Biomicrofluidics 5, 32003 (2011)CrossRefGoogle Scholar
  12. T.C. Doetschman, H. Eistetter, M. Katz, W. Schmidt, R. Kemler, J. Embryol. Exp. Morphol. 87, 27 (1985)Google Scholar
  13. M. Eiraku, N. Takata, H. Ishibashi, M. Kawada, E. Sakakura, S. Okuda, K. Sekiguchi, T. Adachi, Y. Sasai, Nature 472, 51 (2011)CrossRefGoogle Scholar
  14. T. Enver, S. Soneji, C. Joshi, J. Brown, F. Iborra, T. Orntoft, T. Thykjaer, E. Maltby, K. Smith, R.A. Dawud, M. Jones, M. Matin, P. Gokhale, J. Draper, P.W. Andrews, Hum. Mol. Genet. 14, 3129 (2005)CrossRefGoogle Scholar
  15. T. Enver, M. Pera, C. Peterson, P.W. Andrews, Cell Stem Cell 4, 387 (2009)CrossRefGoogle Scholar
  16. M. Esner, J. Pachernik, A. Hampl, P. Dvorak, Int. J. Dev. Biol. 46, 817 (2002)Google Scholar
  17. S.L. Faley, M. Copland, D. Wlodkowic, W. Kolch, K.T. Seale, J.P. Wikswo, J.M. Cooper, Lab Chip 9, 2659 (2009)CrossRefGoogle Scholar
  18. W.-T. Fung, A. Beyzavi, P. Abgrall, N.-T. Nguyen, H.-Y. Li, Lab Chip 9, 2591 (2009)CrossRefGoogle Scholar
  19. J.P. Glotzbach, M. Januszyk, I.N. Vial, V.W. Wong, A. Gelbard, T. Kalisky, H. Thangarajah, M.T. Longaker, S.R. Quake, G. Chu, G.C. Gurtner, PloS One 6, e21211 (2011)CrossRefGoogle Scholar
  20. T. Graf, M. Stadtfeld, Cell Stem Cell 3, 480 (2008)CrossRefGoogle Scholar
  21. K. Hayashi, S.M.C.D.S. Lopes, F. Tang, M.A. Surani, Cell Stem Cell 3, 391 (2008)CrossRefGoogle Scholar
  22. S.-H. Hong, T. Werbowetski-Ogilvie, V. Ramos-Mejia, J.B. Lee, M. Bhatia, Stem Cell Res. 5, 120 (2010)CrossRefGoogle Scholar
  23. S.R. Hough, A.L. Laslett, S.B. Grimmond, G. Kolle, M.F. Pera, PLoS One 4, e7708 (2009)CrossRefGoogle Scholar
  24. Y.-S. Hwang, B.G. Chung, D. Ortmann, N. Hattori, H.-C. Moeller, A. Khademhosseini, Proc. Natl. Acad. Sci. 106, 16978 (2009)CrossRefGoogle Scholar
  25. J.P. Jung, J.M. Squirrell, G.E. Lyons, K.W. Eliceiri, B.M. Ogle, Trends Biotechnol. 30, 233 (2012)CrossRefGoogle Scholar
  26. S.J. Kattman, T.L. Huber, G.M. Keller, Dev. Cell 11, 723 (2006)CrossRefGoogle Scholar
  27. G. Keller, Genes Dev. 19, 1129 (2005)CrossRefGoogle Scholar
  28. M. Khoury, A. Bransky, N. Korin, L.C. Konak, G. Enikolopov, I. Tzchori, S. Levenberg, Biomed. Microdevices 12, 1001 (2010)CrossRefGoogle Scholar
  29. M.A. Kinney, R. Saeed, T.C. McDevitt, Integr. Biol. 4, 641 (2012)CrossRefGoogle Scholar
  30. S.A. Kobel, O. Burri, A. Griffa, M. Girotra, A. Seitz, M.P. Lutolf, Lab Chip 12, 2843 (2012)CrossRefGoogle Scholar
  31. I. Kumano, K. Hosoda, H. Suzuki, K. Hirata, T. Yomo, Lab Chip 12, 3451 (2012)Google Scholar
  32. H. Kurosawa, J. Biosci. Bioeng. 103, 389 (2007)CrossRefGoogle Scholar
  33. A. Lawrenz, F. Nason, J.J. Cooper-White, Biomicrofluidics 6, 2411201 (2012)CrossRefGoogle Scholar
  34. A. Leahy, J.-W. Xiong, F. Kuhnert, H. Stuhlmann, J. Exp. Zool. 284, 67 (1999)CrossRefGoogle Scholar
  35. V. Lecault, M. Vaninsberghe, S. Sekulovic, D.J.H.F. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A.K. White, D.G. Kent, M.R. Copley, F. Taghipour, C.J. Eaves, R.K. Humphries, J.M. Piret, C.L. Hansen, Nat. Methods 8, 581 (2011)CrossRefGoogle Scholar
  36. P.B. Lillehoj, H. Tsutsui, B. Valamehr, H. Wu, C.-M. Ho, Lab Chip 10, 1678 (2010)CrossRefGoogle Scholar
  37. V.A. Maltsev, J. Rohwedel, J. Hescheler, A.M. Wobus, Mech. Dev. 44, 41 (1993)CrossRefGoogle Scholar
  38. J.M. Messana, N.S. Hwang, J. Coburn, J.H. Elisseeff, Z. Zhang, J. Tissue Eng. Regen. Med. 2, 499 (2008)CrossRefGoogle Scholar
  39. J.C. Mohr, J. Zhang, S.M. Azarin, A.G. Soerens, J.J. de Pablo, J.A. Thomson, G.E. Lyons, S.P. Palecek, T.J. Kamp, Biomaterials 31, 1885 (2010)CrossRefGoogle Scholar
  40. R. Nair, A.V Ngangan, M.L. Kemp, T.C. McDevitt, PLoS One 7, e42580 (2012)Google Scholar
  41. E.S. Ng, R.P. Davis, L. Azzola, E.G. Stanley, A.G. Elefanty, Blood 106, 1601 (2005)CrossRefGoogle Scholar
  42. S. Niebruegge, C.L. Bauwens, R. Peerani, N. Thavandiran, S. Masse, E. Sevaptisidis, K. Nanthakumar, K. Woodhouse, M. Husain, E. Kumacheva, P.W. Zandstra, Biotechnol. Bioeng. 102, 493 (2009)CrossRefGoogle Scholar
  43. W. Risau, H. Sariola, H.G. Zerwes, J. Sasse, P. Ekblom, R. Kemler, T. Doetschman, Development (Cambridge, England) 102, 471 (1988)Google Scholar
  44. E. Sachlos, D.T. Auguste, Biomaterials 29, 4471 (2008)CrossRefGoogle Scholar
  45. A.A. Sajini, L.V. Greder, J.R. Dutton, J.M.W. Slack, Dev. Biol. 371, 170 (2012)CrossRefGoogle Scholar
  46. T. Schroeder, Nat. Methods 8, S30 (2011)CrossRefGoogle Scholar
  47. M. Schuldiner, R. Eiges, A. Eden, O. Yanuka, J. Itskovitz-Eldor, R.S. Goldstein, N. Benvenisty, Brain Res. 913, 201 (2001)CrossRefGoogle Scholar
  48. J. Silva, A. Smith, Cell 132, 532 (2008)CrossRefGoogle Scholar
  49. A. Singh, S. Suri, T. Lee, J.M. Chilton, M.T. Cooke, W. Chen, J. Fu, S.L. Stice, H. Lu, T.C. McDevitt, A.J. García, Nat. Methods 10, 438 (2013)Google Scholar
  50. H. Suga, T. Kadoshima, M. Minaguchi, M. Ohgushi, M. Soen, T. Nakano, N. Takata, T. Wataya, K. Muguruma, H. Miyoshi, S. Yonemura, Y. Oiso, Y. Sasai, Nature 480, 57 (2011)CrossRefGoogle Scholar
  51. Y. Toyooka, D. Shimosato, K. Murakami, K. Takahashi, H. Niwa, Development 135, 909 (2008)CrossRefGoogle Scholar
  52. M.D. Ungrin, C. Joshi, A. Nica, C. Bauwens, P.W. Zandstra, PloS One 3, e1565 (2008)CrossRefGoogle Scholar
  53. B. Valamehr, S.J. Jonas, J. Polleux, R. Qiao, S. Guo, E.H. Gschweng, B. Stiles, K. Kam, T.M. Luo, O.N. Witte, X. Liu, B. Dunn, H. Wu, Proc. Natl. Acad. Sci. 105, 14459 (2008)CrossRefGoogle Scholar
  54. A.P. Van Winkle, I.D. Gates, M.S. Kallos, Cells Tissues Organs 196, 34 (2012)Google Scholar
  55. A.K. White, M. VanInsberghe, O.I. Petriv, M. Hamidi, D. Sikorski, M. a Marra, J. Piret, S. Aparicio, and C. L. Hansen. Proc. Natl. Acad. Sci. 108, 13999 (2011)CrossRefGoogle Scholar
  56. D.E. White, M.A. Kinney, T.C. McDevitt, M.L. Kemp, PLoS Comput. Biol. 9, e1002952 (2013)Google Scholar
  57. H.Wichterle, I. Lieberam, A. Jeffery, T.M. Jessell, Cell 110, 385 (2002)Google Scholar
  58. H.-W. Wu, R.-C. Hsu, C.-C. Lin, S.-M. Hwang, G.-B. Lee, Biomicrofluidics 4, 024112 (2010)Google Scholar
  59. M. Wu, T.D. Perroud, N. Srivastava, C.S. Branda, K.L. Sale, B.D. Carson, K.D. Patel, S.S. Branda, A.K. Singh, Lab Chip 12, 2823 (2012) Google Scholar
  60. C. Xu, S. Police, N. Rao, M.K. Carpenter, Circ. Res. 91, 501 (2002)CrossRefGoogle Scholar
  61. J.F. Zhong, Y. Chen, J.S. Marcus, A. Scherer, S.R. Quake, C.R. Taylor, L.P. Weiner, Lab Chip 8, 68 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jenna L. Wilson
    • 1
  • Shalu Suri
    • 2
  • Ankur Singh
    • 3
  • Catherine A. Rivet
    • 1
  • Hang Lu
    • 2
    • 4
  • Todd C. McDevitt
    • 1
    • 4
  1. 1.The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA
  2. 2.School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  4. 4.The Parker H. Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations