Advertisement

Biomedical Microdevices

, Volume 15, Issue 6, pp 997–1003 | Cite as

Superparamagnetic microrobots: fabrication by two-photon polymerization and biocompatibility

  • Marcel Suter
  • Li Zhang
  • Erdem C. Siringil
  • Christian Peters
  • Tessa Luehmann
  • Olgac Ergeneman
  • Kathrin E. Peyer
  • Bradley J. Nelson
  • Christofer Hierold
Article

Abstract

This work presents the fabrication and controlled actuation of swimming microrobots made of a magnetic polymer composite (MPC) consisting of 11-nm-diameter magnetite (Fe3O4) nanoparticles and photocurable resin (SU-8). Two-photon polymerization (TPP) is used to fabricate the magnetic microstructures. The material properties and the cytotoxicity of the MPC with different nanoparticle concentrations are characterized. The live/dead staining tests indicate that MPC samples with varied concentrations, up to 10 vol.%, have negligible cytotoxicity after 24 h incubation. Fabrication parameters of MPC with up to 4 vol.% were investigated. We demonstrate that the helical microdevices made of 2 vol.% MPC were capable of performing corkscrew motion in water applying weak uniform rotating magnetic fields.

Keywords

Superparamagnetic nanocomposite Microrobots Magnetic actuation Cytotoxicity 

Notes

Acknowledgments

The authors thank Eszter Barthazy and Elisabeth Müller (EMEZ at ETH Zurich) for the TEM-images, the technical support from the FIRST lab at ETH Zurich. Funding for this research is provided by Swiss National Science Foundation (SNSF), project number 130069 and the ETH Zurich (TH-28 06–3).

Supplementary material

10544_2013_9791_MOESM1_ESM.doc (119 kb)
ESM 1 (DOC 119 kb)
ESM 2

(WMV 2520 kb)

References

  1. R.A. Anderson, H.C. Berg, Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382 (1973)CrossRefGoogle Scholar
  2. M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutierrez, M.P. Morales, I.B. Bohm, J.T. Heverhagen, D. Prosperi, W.J. Parak, Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41, 4306–4334 (2012)CrossRefGoogle Scholar
  3. A. Deepu, V.V.R. Sai, S. Mukherji, Simple surface modification techniques for immobilization of biomolecules on SU-8. J. Mater. Sci. 20, 25–28 (2009)Google Scholar
  4. D.L. Fan, Z.Z. Yin, R. Cheong, F.Q. Zhu, R.C. Cammarata, C.L. Chien, A. Levchenko, Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. Nat. Nanotechnol. 5, 545–551 (2010)CrossRefGoogle Scholar
  5. E. Frances, J. Burdan, A. Cutino, K.E. Green, A new sustained delivery technology for posterior eye disease. Expert Opin. Drug Deliv. 5, 1039–1046 (2008)CrossRefGoogle Scholar
  6. A. Ghosh, P. Fischer, Controlled propulsion of artificial magnetic nano-structured propellers. Nano Lett. 9, 2243–2245 (2009)CrossRefGoogle Scholar
  7. M. Hagiwara, T. Kawahara, Y. Yamanishi, T. Masuda, L. Feng, F. Arai, On-chip magnetically actuated robot with ultrasonic vibration for single cell manipulations. Lab Chip 11, 2049–2054 (2011)CrossRefGoogle Scholar
  8. J. Kim, H.S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I.C. Song, W.K. Moon, T. Hyeon, Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. 47, 8438–8441 (2008)CrossRefGoogle Scholar
  9. A.H. Lu, E.L. Salabas, F. Schuth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007)CrossRefGoogle Scholar
  10. S. Martel, M. Mohammadi, O. Felfoul, Z. Lu, P. Pouponneau, Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int. J. Robot. Res. 28, 571–582 (2009)CrossRefGoogle Scholar
  11. Y.F. Mei, A.A. Solovev, S. Sanchez, O.G. Schmidt, Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem. Soc. Rev. 40, 2109–2119 (2011)CrossRefGoogle Scholar
  12. B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)CrossRefGoogle Scholar
  13. G.A. Ozin, I. Manners, S. Fournier-Bidoz, A. Arsenault, Dream Nanomachines. Adv. Mater. 17, 3011–3018 (2005)CrossRefGoogle Scholar
  14. S.H. Park, D.Y. Yang, K.S. Lee, Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser Photonics Rev. 3, 1–11 (2009)CrossRefGoogle Scholar
  15. C. Peters, O. Ergeneman, B. J. Nelson, C. Hierold, Pushing the limits of photo-curable SU-8-based superparamagnetic polymer composites, Proc. Int. Conf. on Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS) (Barcelona, 2013), pp 2676–2679Google Scholar
  16. K.E. Peyer, L. Zhang, B.J. Nelson, Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5, 1259–1272 (2013a)CrossRefGoogle Scholar
  17. K.E. Peyer, S. Tottori, F. Qiu, L. Zhang, B.J. Nelson, Magnetic helical micromachines. Chem. Eur. J. 19, 28–38 (2013b)CrossRefGoogle Scholar
  18. E.M. Purcell, Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977)CrossRefGoogle Scholar
  19. F.M. Qiu, L. Zhang, S. Tottori, K. Marquardt, K. Krawczyk, A. Franco-Obregon, B.J. Nelson, Bio-inspired microrobots: the first intimate contact with cells. Mater. Today 15, 463 (2012)CrossRefGoogle Scholar
  20. S. Schuerle, S. Pane, E. Pellicer, J. Sort, M.D. Baro, B.J. Nelson, Helical and tubular lipid microstructures that are electroless-coated with CoNiReP for wireless magnetic manipulation. Small 8, 1498–1502 (2012)CrossRefGoogle Scholar
  21. J.J. Shi, D. Ahmed, X. Mao, S.C.S. Lin, A. Lawit, T.J. Huang, Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9, 2890–2895 (2009)CrossRefGoogle Scholar
  22. C.E. Sing, L. Schmid, M.F. Schneider, T. Franke, A. Alexander-Katz, Controlled surface-induced flows from the motion of self-assembled colloidal walkers. Proc. Natl. Acad. Sci. U. S. A. 107, 535–540 (2010)CrossRefGoogle Scholar
  23. K.M. Sivaraman, C. Kellenberger, S. Pane, O. Ergeneman, T. Luhmann, N.A. Luechinger, H. Hall, W.J. Stark, B.J. Nelson, Porous polysulfone coatings for enhanced drug delivery. Biomed. Microdevices 14, 603–612 (2012)CrossRefGoogle Scholar
  24. A.A. Solovev, W. Xi, D.H. Gracias, S.M. Harazim, C. Deneke, S. Sanchez, O.G. Schmidt, Self-propelled nanotools. ACS Nano 6, 1751–1756 (2012)CrossRefGoogle Scholar
  25. M. Suter, O. Ergeneman, J. Zurcher, C. Moitzi, S. Pane, T. Rudin, S.E. Pratsinis, B.J. Nelson, C. Hierold, A photopatternable superparamagnetic nanocomposite: material characterization and fabrication of microstructures. Sensors Actuat. B Chem. 156, 433–443 (2011a)CrossRefGoogle Scholar
  26. M. Suter, O. Ergeneman, J. Zurcher, S. Schmid, A. Camenzind, B.J. Nelson, C. Hierold, Superparamagnetic photocurable nanocomposite for the fabrication of microcantilevers. J. Micromech. Microeng. 21, 025023 (2011b)CrossRefGoogle Scholar
  27. M. Suter, Photopatternable superparamagnetic nanocomposite for the fabrication of microstructures, Ph.D. dissertation, ETH Zurich, (2012)Google Scholar
  28. Y. Tian, Y.L. Zhang, J.F. Ku, Y. He, B.B. Xu, Q.D. Chen, H. Xia, H.B. Sun, High performance magnetically controllable microturbines. Lab Chip 10, 2902–2905 (2010)CrossRefGoogle Scholar
  29. S. Tottori, L. Zhang, F.M. Qiu, K.K. Krawczyk, A. Franco-Obregon, B.J. Nelson, Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24, 811–816 (2012)CrossRefGoogle Scholar
  30. J. Wang, Cargo-towing synthetic nanomachines: towards active transport in microchip devices. Lab Chip 12, 1944–1950 (2012)CrossRefGoogle Scholar
  31. H. Xia, J.A. Wang, Y. Tian, Q.D. Chen, X.B. Du, Y.L. Zhang, Y. He, H.B. Sun, Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization. Adv. Mater. 22, 3204–3207 (2010)CrossRefGoogle Scholar
  32. L. Zhang, J.J. Abbott, L.X. Dong, B.E. Kratochvil, D. Bell, B.J. Nelson, Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94, 064107 (2009a)CrossRefGoogle Scholar
  33. L. Zhang, J.J. Abbott, L. Dong, K.E. Peyer, B.E. Kratochvil, H. Zhang, C. Bergeles, B.J. Nelson, Characterizing the swimming properties of artificial bacterial flagella. Nano Lett. 9, 3663–3667 (2009b)CrossRefGoogle Scholar
  34. Y.L. Zhang, Q.D. Chen, H. Xia, H.B. Sun, Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today 5, 435–448 (2010a)CrossRefGoogle Scholar
  35. L. Zhang, K.E. Peyer, B.J. Nelson, Artificial bacterial flagella for micromanipulation. Lab Chip 10, 2203–2215 (2010b)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marcel Suter
    • 1
  • Li Zhang
    • 2
  • Erdem C. Siringil
    • 3
  • Christian Peters
    • 1
  • Tessa Luehmann
    • 4
  • Olgac Ergeneman
    • 3
  • Kathrin E. Peyer
    • 3
  • Bradley J. Nelson
    • 3
  • Christofer Hierold
    • 1
  1. 1.Micro and Nano SystemsETH ZurichZurichSwitzerland
  2. 2.Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongShatin NTChina
  3. 3.Institute of Robotics and Intelligent SystemsETH ZurichZurichSwitzerland
  4. 4.Institute for Pharmacy and Food ChemistryUniversity of WurzburgWurzburgGermany

Personalised recommendations