Biomedical Microdevices

, Volume 15, Issue 6, pp 941–948 | Cite as

Enrichment of prostate cancer cells from blood cells with a hybrid dielectrophoresis and immunocapture microfluidic system

  • Chao Huang
  • He Liu
  • Neil H. Bander
  • Brian J. Kirby


The isolation of circulating tumor cells (CTCs) from cancer patient blood is a technical challenge that is often addressed by microfluidic approaches. Two of the most prominent techniques for rare cancer cell separation, immunocapture and dielectrophoresis (DEP), are currently limited by a performance tradeoff between high efficiency and high purity. The development of a platform capable of these two performance criteria can potentially be facilitated by incorporating both DEP and immunocapture. We present a hybrid DEP-immunocapture system to characterize how DEP controls the shear-dependent capture of a prostate cancer cell line, LNCaP, and the nonspecific adhesion of peripheral blood mononuclear cells (PBMCs). Characterization of cell adhesion with and without DEP effects was performed in a Hele-Shaw flow cell that was functionalized with the prostate-specific monoclonal antibody, J591. In this model system designed to make nonspecific PBMC adhesion readily apparent, we demonstrate LNCaP enrichment from PBMCs by precisely tuning the applied AC electric field frequency to enhance immunocapture of LNCaPs and reduce nonspecific adhesion of PBMCs with positive and negative DEP, respectively. Our work shows that DEP and immunocapture techniques can work synergistically to improve cancer cell capture performance, and it informs the design of future hybrid DEP-immunocapture systems with improved CTC capture performance to facilitate research on cancer metastasis and drug therapies.


Prostate cancer Dielectrophoresis Immunocapture Circulating tumor cell Enrichment Microfluidic 



This work was supported by the Center on the Microenvironment and Metastasis at Cornell (Award Number U54CA-143876) from the National Cancer Institute Physical Sciences Oncology Center (NCI PS-OC). CH was supported by a National Science Foundation (NSF) Graduate Research Fellowship. Device fabrication was performed in part at the Cornell NanoScale Science and Technology Facility (CNF), a member of the National Nanotechnology Infrastructure Network, which is supported by the NSF (Grant ECS-0335765).


  1. M. Alshareef, N. Metrakos, E. Juarez Perez, F. Azer, F. Yang, X. Yang, G. Wang, Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics 7(1), 011,803 (2013)CrossRefGoogle Scholar
  2. F.F. Becker, P.R. Gascoyne, X.B. Wang, Y. Huang, R. Pethig, J. Vykoukal, Separation of human breast cancer cells from blood by differential dielectric affinity. Proc. Natl. Acad. Sci. U.S.A. 92(3), 860–864 (1995)CrossRefGoogle Scholar
  3. E. Diamond, G.Y. Lee, N.H. Akhtar, B.J. Kirby, P. Giannakakou, S.T. Tagawa, D.M. Nanus, Isolation and characterization of circulating tumor cells in prostate cancer. Front. Oncol. 2, 131 (2012)CrossRefGoogle Scholar
  4. P.R.C. Gascoyne, J. Noshari, T.J. Anderson, F.F. Becker, Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophor. 30(8), 1388–1398 (2009)CrossRefGoogle Scholar
  5. J.P. Gleghorn, E.D. Pratt, D. Denning, H. Liu, N.H. Bander, S.T. Tagawa, D.M. Nanus, P.A. Giannakakou, B.J. Kirby, Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip. 10(1), 27–29 (2010)CrossRefGoogle Scholar
  6. V. Gupta, I. Jafferji, M. Garza, V.O. Melnikova, D.K. Hasegawa, R. Pethig, D.W. Davis, ApoStream, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics 6(2), 024,133 (2012)CrossRefGoogle Scholar
  7. S.I. Han, Y.D. Joo, K.H. Han, An electrorotation technique for mea suring the dielectric properties of cells with simultaneous use of negative quadrupolar dielectrophoresis and electrorotation. The Anal. 138(5), 1529–1537 (2013)CrossRefGoogle Scholar
  8. B.G. Hawkins, A.E. Smith, Y.A. Syed, B.J. Kirby, Continuous-flow particle separation by 3D insulative dielectrophoresis using coherently shaped, dc-biased, ac electric fields. Anal. Chem. 79(19), 7291–7300 (2007)CrossRefGoogle Scholar
  9. B.G. Hawkins, J.P. Gleghorn, B.J. Kirby, in Dielectrophoresis for Particle and Cell Manipulations, ed. by J.D. Zahn. Methods in Bioengineering: Biomicrofabrication and Biomicrofluidics, chap. 6 (Artech House, Boston, 2009), pp. 133–181Google Scholar
  10. B.G. Hawkins, C. Huang, S. Arasanipalai, B.J. Kirby, Automated dielectrophoretic characterization of Mycobacterium smegmatis. Anal. Chem. 83(9), 3507–3515 (2011)CrossRefGoogle Scholar
  11. E.A. Henslee, M.B. Sano, A.D. Rojas, E.M. Schmelz, R.V. Davalos, Selective concentration of human cancer cells using contactless dielectrophoresis. Electrophoresis 32(18), 2523–2529 (2011)CrossRefGoogle Scholar
  12. C. Huang, S.M. Santana, H. Liu, N.H. Bander, B.G. Hawkins B.J. Kirby, Characterization of a hybrid dielectrophoresis and immunocapture microfluidic system for cancer cell capture. submitted (2013)Google Scholar
  13. K.A. Hyun, H.I. Jung, Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis. Electrophoresis. 34(7), 1028–1041 (2013)CrossRefGoogle Scholar
  14. C.P. Jen, H.H. Chang, C.T. Huang, K.H. Chen, A microfabricated module for isolating cervical carcinoma cells from peripheral blood utilizing dielectrophoresis in stepping electric fields. Microsyst. Technol. 18(11), 1887–1896 (2012)CrossRefGoogle Scholar
  15. B.J. Kirby, Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices (Cambridge University Press, New York, 2010)Google Scholar
  16. B.J. Kirby, M. Jodari, M.S. Loftus, G. Gakhar, E.D. Pratt, C. Chanel-Vos, J.P. Gleghorn, S.M. Santana, H. Liu, J.P. Smith, V.N. Navarro, S.T. Tagawa, N.H. Bander, D.M. Nanus, P. Giannakakou, Functional characterization of circulating tumor cells with a prostate cancer-specific microfluidic device. PLOS ONE. 7(4), e35,976 (2012)CrossRefGoogle Scholar
  17. R.T. Krivacic, A. Ladanyi, D.N. Curry, H.B. Hsieh, P. Kuhn, D.E. Bergsrud, J.F. Kepros, T. Barbera, M.Y. Ho, L.B. Chen, R.A. Lerner, R.H. Bruce, A rare-cell detector for cancer. Proc. Natl. Acad. Sci. U.S.A. 101(29), 10,501–10,504 (2004)CrossRefGoogle Scholar
  18. M.A. Leversha, J. Han, Z. Asgari, D.C. Danila, O. Lin, R. Gonzalez Espinoza, A. Anand, H. Lilja, G. Heller, M. Fleisher, H.I. Scher, Fluorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate cancer. Clin. Cancer Res. 15(6), 2091–2097 (2009)CrossRefGoogle Scholar
  19. H. Liu, P. Moy, S. Kim, Y. Xia, A. Rajasekaran, V. Navarro, B. Knudsen, N.H. Bander, Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res. 57(17), 3629–3634 (1997)Google Scholar
  20. H. Morgan, N. Green, AC Electrokinetics: Colloids and Nanoparticles (Research Studies Press, Ltd., Baldock, 2002)Google Scholar
  21. S.K. Murthy, A. Sin, R.G. Tompkins, M. Toner, Effect of flow and surface conditions on human lymphocyte isolation using microfluidic chambers. Langmuir. 20(26), 11,649–11,655 (2004)CrossRefGoogle Scholar
  22. S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173), 1235–1239 (2007)CrossRefGoogle Scholar
  23. E.D. Pratt, C. Huang, B.G. Hawkins, J.P. Gleghorn, B.J. Kirby, Rare cell capture in microfluidic devices. Chem. Eng. Sci. 66(7), 1508–1522 (2011)CrossRefGoogle Scholar
  24. E. Racila, D. Euhus, A.J. Weiss, C. Rao, J. McConnell, L.W.M.M. Terstappen, J.W. Uhr, Detection and characterization of carcinoma cells in the blood. Proc. Natl. Acad. Sci. U.S.A. 95(8), 4589–94 (1998)CrossRefGoogle Scholar
  25. A.D. Rhim, E.T. Mirek, N.M. Aiello, A. Maitra, J.M. Bailey, F. McAllister, M. Reichert, G.L. Beatty, A.K. Rustgi, R.H. Vonderheide, S.D. Leach, B.Z. Stanger, EMT and dissemina tion precede pancreatic tumor formation. Cell 148(1–2), 349–361 (2012)CrossRefGoogle Scholar
  26. A. Salmanzadeh, L. Romero, H. Shafiee, R.C. Gallo-Villanueva, M.A. Stremler, S.D. Cramer, R.V. Davalos, Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature. Lab Chip. 12(1), 182–189 (2012)CrossRefGoogle Scholar
  27. A. Salmanzadeh, M.B. Sano, R.C. Gallo-Villanueva, P.C. Roberts, E.M. Schmelz, R.V. Davalos, Investigating dielectric properties of different stages of syngeneic murine ovarian cancer cells. Biomicrofluidics 7(1), 011,809 (2013)CrossRefGoogle Scholar
  28. M.B. Sano, J.L. Caldwell, R.V. Davalos, Modeling and development of a low frequency contactless dielectrophoresis (cDEP) platform to sort cancer cells from dilute whole blood samples. Biosens. Bioelectron. 30(1), 13–20 (2011a)CrossRefGoogle Scholar
  29. M.B. Sano, E.A. Henslee, E. Schmelz, R.V. Davalos, Contactless dielectrophoretic spectroscopy: examination of the dielectric properties of cells found in blood. Electrophoresis 32(22), 3164–3171 (2011b)CrossRefGoogle Scholar
  30. S.M. Santana, H. Liu, N.H. Bander, J.P. Gleghorn, B.J. Kirby, Immunocapture of prostate cancer cells by use of anti-PSMA anti-bodies in microdevices. Biomed. Microdevices. 14(2), 401–407 (2012)CrossRefGoogle Scholar
  31. S. Shim, K. Stemke-Hale, J. Noshari, F.F. Becker, P.R.C. Gascoyne, Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems. Biomicrofluidics 7(1), 011,808 (2013a)CrossRefGoogle Scholar
  32. S. Shim, K. Stemke-Hale, A.M. Tsimberidou, J. Noshari, T.E. Anderson, P.R.C. Gascoyne, Antibody-independent isolation of circulating tumor cells by continuous-flow dielectrophoresis. Biomicrofluidics 7(1), 011,807 (2013b)CrossRefGoogle Scholar
  33. J.P. Smith, A.C. Barbati, S.M. Santana, J.P. Gleghorn, B.J. Kirby, Microfluidic transport in microdevices for rare cell capture. Electrophoresis 33(21), 3133–3142 (2012)CrossRefGoogle Scholar
  34. S.L. Stott, C.H. Hsu, D.I. Tsukrov, M. Yu, D.T. Miyamoto, B.A. Waltman, S.M. Rothenberg, A.M. Shah, M.E. Smas, G.K. Korir, F.P. Floyd, A.J. Gilman, J.B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L.V. Sequist, R.J. Lee, K.J. Isselbacher, S. Maheswaran, D.A. Haber, M. Toner, Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. U.S.A. 107(43), 18,392–18,397 (2010a)CrossRefGoogle Scholar
  35. S.L. Stott, R.J. Lee, S. Nagrath, M. Yu, D.T. Miyamoto, L. Ulkus, E.J. Inserra, M. Ulman, S. Springer, Z. Nakamura, A.L. Moore, D.I. Tsukrov, M.E. Kempner, D.M. Dahl, C.L. Wu, A.J. Iafrate, M.R. Smith, R.G. Tompkins, L.V. Sequist, M. Toner, D.A. Haber, S. Maheswaran, Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci. Transl. Med. 2(25), 25ra23 (2010b)CrossRefGoogle Scholar
  36. S. Usami, H.H. Chen, Y. Zhao, S. Chien, R. Skalak, Design and construction of a linear shear stress flow chamber. Ann. Biomed. Eng. 21(1), 77–83 (1993)CrossRefGoogle Scholar
  37. J. Voldman, Electrical forces for microscale cell manipulation. Annu. Rev. Biomed. Eng. 8, 425–54 (2006)CrossRefGoogle Scholar
  38. S. Wang, K. Liu, J. Liu, Z.T.F. Yu, X. Xu, L. Zhao, T. Lee, E.K. Lee, J. Reiss, Y.K. Lee, L.W.K. Chung, J. Huang, M. Rettig, D. Seligson, K.N. Duraiswamy, C.K.F. Shen, H.R. Tseng, Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew. Chem. Int. Ed. 50(13), 3084–3088 (2011)CrossRefGoogle Scholar
  39. M. Yu, D.T. Ting, S.L. Stott, B.S. Wittner, F. Ozsolak, S. Paul, J.C. Ciciliano, M.E. Smas, D. Winokur, A.J. Gilman, M.J. Ulman, K. Xega, G. Contino, B. Alagesan, B.W. Brannigan, P.M. Milos, D.P. Ryan, L.V. Sequist, N. Bardeesy, S. Ramaswamy, M. Toner, S. Maheswaran, D.A. Haber, RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature. 487(7408), 510–513 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Chao Huang
    • 1
  • He Liu
    • 2
  • Neil H. Bander
    • 2
  • Brian J. Kirby
    • 3
    • 4
  1. 1.Department of Biomedical EngineeringCornell UniversityIthacaUSA
  2. 2.Department of UrologyWeill Medical College of Cornell UniversityNew YorkUSA
  3. 3.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA
  4. 4.Division of Hematology and Medical Oncology, Departmentof MedicineWeill Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations