Skip to main content

Advertisement

Log in

A liposome-based ion release impedance sensor for biological detection

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Low-cost detection of pathogens and biomolecules at the point-of-care promises to revolutionize medicine through more individualized monitoring and increased accessibility to diagnostics in remote and resource-limited areas. While many approaches to biosensing are still limited by expensive components or inadequate portability, we present here an ELISA-inspired lab-on-a-chip strategy for biological detection based on liposome tagging and ion-release impedance spectroscopy. Ion-encapsulating dipalmitoylphosphatidylcholine (DPPC) liposomes can be functionalized with antibodies and are stable in deionized water yet permeabilized for ion release upon heating, making them ideal reporters for electrical biosensing of surface-immobilized antigens. We demonstrate the quantification of these liposomes by real-time impedance measurements, as well as the qualitative detection of viruses as a proof-of-concept toward a portable platform for viral load determination which can be applied broadly to the detection of pathogens and other biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • T. Chen, D. McIntosh, Y. He, J. Kim, D.A. Tirrell, P. Scherrer, D.B. Fenske, A.P. Sandhu, P.R. Cullis, Mol. Membr. Biol. 21, 385 (2004)

    Article  Google Scholar 

  • G. Chen, C.J. Alberts, W. Rodriguez, M. Toner, Anal. Chem. 82, 723 (2010)

    Article  Google Scholar 

  • X. Cheng, Y. Liu, D. Irimia, U. Demirci, L. Yang, L. Zamir, W.R. Rodríguez, M. Toner, R. Bashir, Lab. Chip 7, 746 (2007)

    Article  Google Scholar 

  • J.T. Connelly, S. Kondapalli, M. Skoupi, J.S.L. Parker, B.J. Kirby, A.J. Baeumner, Anal. Bioanal. Chem. 402, 315 (2012)

    Article  Google Scholar 

  • G.L. Damhorst, N.N. Watkins, R. Bashir, IEEE Trans. Bio-med. Eng. 60, 715 (2013)

    Article  Google Scholar 

  • A. deMello, D. van Swaay, Lab. Chip. 13, 752 (2012)

    Google Scholar 

  • K. A. Edwards, O. R. Bolduc, and A. J. Baeumner, Curr. Opin. Chem. Biol. 16, 1 (2012)

    Google Scholar 

  • D.H. Ekstrand, R.J. Awad, C.F. Källander, J.S. Gronowitz, Biotechnol. Appl. Biochem. 23(Pt 2), 95 (1996)

    Google Scholar 

  • R. Gómez, R. Bashir, A. Bhunia, Sens. Actuators B: Chem. 86, 198 (2002)

    Article  Google Scholar 

  • R. Gómez-sjöberg, D.T. Morisette, R. Bashir, S. Member, J. Microelectromech. Syst. 14, 829 (2005)

    Article  Google Scholar 

  • D.D. Ho, Science 272, 1124 (1996)

    Article  Google Scholar 

  • M. Hwang, R. Prud’homme, J. Kohn, J. Thomas, Langmuir 17 (2001)

  • S.A. Kim, J.S. Peacock, J. Immunol. Methods 158, 57 (1993)

    Article  Google Scholar 

  • E. Kim, J. Stanton, B. Korber, Nanomedicine 3 (2008)

  • Y.-G. Kim, S. Moon, D.R. Kuritzkes, U. Demirci, Biosens. Bioelectron. 25, 253 (2009)

    Article  Google Scholar 

  • S. Kwakye, V.N. Goral, A.J. Baeumner, Biosens. Bioelectron. 21, 2217 (2006)

    Article  Google Scholar 

  • K.-B. Lee, E.-Y. Kim, C.A. Mirkin, S.M. Wolinsky, Nano Lett 4, 1869 (2004)

    Article  Google Scholar 

  • S.H. Lee, S.-W. Kim, J.Y. Kang, C.H. Ahn, Lab. Chip 8, 2121 (2008)

    Article  Google Scholar 

  • H.H. Lee, M.A. Dineva, Y.L. Chua, A.V. Ritchie, I. Ushiro-Lumb, C.A. Wisniewski, J. Infect. Dis. 201(Suppl), S65 (2010)

    Article  Google Scholar 

  • F. Lisdat, D. Schäfer, Anal. Bioanal. Chem. 391, 1555 (2008)

    Article  Google Scholar 

  • Q. Liu, B. Boyd, Analyst. 138, 391 (2013)

  • S.R. Nugen, P.J. Asiello, J.T. Connelly, A.J. Baeumner, Biosens. Bioelectron. 24, 2428 (2009)

    Article  Google Scholar 

  • Omega Engineering, Omega Engineering, Inc. 11 (2013)

  • Z.A. Parpia, R. Elghanian, A. Nabatiyan, D.R. Hardie, D.M. Kelso, JAIDS J. Acquir. Immune Defic. Syndr. 55, 413 (2010)

    Article  Google Scholar 

  • H. Shafiee, M. Jahangir, F. Inci, S. Wang, R. B. M. Willenbrecht, F. F. Giguel, A. M. N. Tsibris, D. R. Kuritzkes, and U. Demirci, Small 1 (2013). doi:10.1002/smll.201202195

  • F. Shen, B. Sun, J.E. Kreutz, E.K. Davydova, W. Du, P.L. Reddy, L.J. Joseph, R.F. Ismagilov, J. Am. Chem. Soc. 133, 17705 (2011)

    Article  Google Scholar 

  • S. Tang, I. Hewlett, J. Infect. Dis. 201(Suppl), S59 (2010)

    Article  Google Scholar 

  • S. Tang, J. Zhao, J. Storhoff, JAIDS J. Acquir. Immune Defic. Syndr. 46, 231 (2007)

    Article  Google Scholar 

  • W. Tang, W.H.A. Chow, Y. Li, H. Kong, Y.-W. Tang, B. Lemieux, J. Infect. Dis. 201(Suppl), S46 (2010)

    Article  Google Scholar 

  • S. Tanriverdi, L. Chen, S. Chen, J. Infect. Dis. 201(Suppl), S52 (2010)

    Article  Google Scholar 

  • S.-Y. Teh, R. Khnouf, H. Fan, A.P. Lee, Biomicrofluidics 5, 44113 (2011)

    Article  Google Scholar 

  • S. Wang, A. Ip, F. Xu, F. F. Giguel, S. Moon, A. Akay, D. R. Kuritzkes, and U. Demirci, sensors, and command, control, communications, and intelligence (C3I) technologies for homeland security and homeland defense IX 7666, 76661H (2010)

  • S. Wang, M. Esfahani, U.A. Gurkan, F. Inci, D.R. Kuritzkes, U. Demirci, Lab. Chip 12, 1508 (2012)

    Article  Google Scholar 

  • Woongjin Chemical Co Ltd, CSM Technical Manual (Seoul, Republic of Korea, 2010), p. 137

  • N.V. Zaytseva, V.N. Goral, R.A. Montagna, A.J. Baeumner, Lab. Chip 5, 805 (2005a)

    Article  Google Scholar 

  • N.V. Zaytseva, R.A. Montagna, A.J. Baeumner, Anal. Chem. 77, 7520 (2005b)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Mehmet Toner at Massachusetts General Hospital, William Rodriguez and Marta Fernandez Suarez at Daktari Diagnostics, Inc., and Joshua Wood and Brian Dorvel at the University of Illinois for helpful discussions. Partial support was provided by the Illinois Distinguished Fellowship (to GLD) at the University of Illinois at Urbana-Champaign. This work was also supported by the National Institutes of Health (1R01 HL109192 to H.J.K. and Chemistry-Biology Interface Training Program 5T32GM070421 to C.E.S.). The devices were fabricated and tested at the Micro and Nanotechnology Laboratory at the University of Illinois at Urbana-Champaign (www.mntl.illinois.edu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Bashir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damhorst, G.L., Smith, C.E., Salm, E.M. et al. A liposome-based ion release impedance sensor for biological detection. Biomed Microdevices 15, 895–905 (2013). https://doi.org/10.1007/s10544-013-9778-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9778-4

Keywords

Navigation