Advertisement

Biomedical Microdevices

, Volume 15, Issue 5, pp 811–820 | Cite as

Subcutaneous blood pressure monitoring with an implantable optical sensor

  • Michael TheodorEmail author
  • Dominic Ruh
  • Jens Fiala
  • Katharina Förster
  • Claudia Heilmann
  • Yiannos Manoli
  • Friedhelm Beyersdorf
  • Hans Zappe
  • Andreas Seifert
Article

Abstract

We introduce a minimally invasive, implantable system that uses pulse transit time to determine blood pressure. In contrast to previous approaches, the pulse wave is detected by a photoplethysmographic (PPG) signal, acquired with high quality directly on subcutaneous muscle tissue. Electrocardiograms (ECG) were measured with flexible, implantable electrodes on the same tissue. PPG detection is realized by a flat 20 mm x 6 mm optoelectronic pulse oximeter working in reflection mode. The optical sensor as well as the ECG electrodes can be implanted using minimally invasive techniques, with only a small incision into the skin, making long-term monitoring of blood pressure in day-to-day life for high-risk patients possible. The in vivo measurements presented here show that the deviation to intra-arterial reference measurements of the systolic blood pressure in a physiologically relevant range is only 5.5 mmHg, demonstrated for more than 12 000 pulses. This makes the presented sensor a grade B blood pressure monitor.

Keywords

Pulse transit time Photoplethysmography Blood pressure monitoring Medical implant Optical sensor Minimally invasive 

References

  1. S. Ahmad, S. Chen, K. Soueidan, I. Batkin, M. Bolic, H. Dajani, V. Groza, Electrocardiogram-assisted blood pressure estimation. IEEE Trans. Biomed. Eng. 59, 608–618 (2012)CrossRefGoogle Scholar
  2. H. Asada, P. Shaltis, A. Reisner, S. Rhee, R. Hutchinson, Mobile monitoring with wearable photoplethysmographic biosensors. Eng. Med. Biol. Mag. IEEE 22(3), 28–40 (2003). doi: 10.1109/MEMB.2003.1213624 CrossRefGoogle Scholar
  3. D. Bergel, The static elastic properties of the arterial wall. J. Physiol. 445, 156–3 (1961)Google Scholar
  4. J. Blacher, R. Asmar, S. Djane, G. London, M. Safar, Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertens. - J. Am. Heart Assoc. 33, 1111–1117 (1999)Google Scholar
  5. C.P. Chua, C. Heneghan, in Proceedings 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS ’06. Continuous blood pressure monitoring using ecg and finger photoplethysmogram, 5117–5120 (2006). doi: 10.1109/IEMBS.2006.259612
  6. S. Deb, C. Nanda, D. Goswami, J. Mukhopadhyay, S. Chakrabarti, in Proceedings International Conference on Convergence Information Technology. Cuff-Less Estimation Of Blood Pressure Using Pulse Transit Time And Pre-Ejection Period, pp. 941–944 (2007). doi: 10.1109/ICCIT.2007.4420381
  7. R. Farra, N. Sheppard, L. McCabe, R. Neer, J. Anderson, J. Santini, M. Cima, R. Langer, First-in-human testing of a wirelessly controlled drug delivery microchip. Science Translational Medicine. 4(122), 122ra21 (2012)CrossRefGoogle Scholar
  8. J. Fiala, P. Bingger, D. Ruh, K. Foerster, C. Heilmann, F. Beyersdorf, H. Zappe, A. Seifert, An implantable optical blood pressure sensor based on pulse transit time. J. Biomed. Microdevices (2012). doi: 10.1007/s10544-012-9689-9
  9. P. Fung, G. Dumont, C. Ries, C. Mott, M. Ansermino, in Proceedings 26th Annual International Conference of the Engineering in Medicine and Biology Society EMBC. Continuous Noninvasive Blood Pressure Measurement By Pulse Transit Time. 1, 738–741 (2004). doi: 10.1109/IEMBS.2004.1403264
  10. Y.C. Fung, Biomechanics: Circulation (Springer, 2010)Google Scholar
  11. C. Lee, C. Lee, Y. Zhang, in Proceedings IEEE EMBS Asian-Pacific Conference on Biomedical Engineering, ed. by Y. Zhang. Cuffless and Noninvasive Estimation Of Blood Pressure Based On A Wavelet Transform Approach, 148–149 (2003). doi: 10.1109/APBME.2003.1302627
  12. S.C. Millasseaua, J.M. Rittera, K. Takazawab, P.J. Chowienczyka, Contour analysis of the photoplethysmographic pulse measured at the finger. J. Hypertens. 24, 1449–1456 (2006)CrossRefGoogle Scholar
  13. J. Moyle, Pulse Oximetry, 2nd edn. BMJ (2002)Google Scholar
  14. E. Nye, The effect of blood pressure alteration on the pulse wave velocity. Br. Heart J. 26, 261–265 (1964)CrossRefGoogle Scholar
  15. E. O’Brien, J. Petrie, W. Littler, M. de Swiet, P. Padfield, D. Altman, M. Bland, A. Coats, N. Altkins, The british hypertension society protocol for the evaluation of blood pressure measuring devices. J. Hypertens. 11, 43–62 (1993)Google Scholar
  16. E. O’Brien, R. Asmar, L. Beilin, Y. Imai, J.M. Mallion, G. Mancia, T. Mengden, M. Meyers, P. Padfield, P. Platini, G. Parati, T. Pickering, J. Redon, J. Staessen, G. Stergiou, P. Verdecchia, European society of hypertension recommendations for conventional, ambulatory and home blood pressure measurement. J. Hypertens. 21, 821–848 (2003)CrossRefGoogle Scholar
  17. S. Richard, J.M.R. Irwin, Manual of Intensive Care Medicine (Williams & Wilkins, 2009)Google Scholar
  18. T. Stieglitz, S. Kammer, K. Koch, S. Wien, A. Robitzki, in 7th Conference of the International Functional Electrical Stimulation Society (IFESS). Encapsulation of flexible biomedical microimplants with parylene c (2002)Google Scholar
  19. R. Turcott, T. Pavek, Hemodynamic sensing using subcutaneous photoplethysmography. Am. J. Physiol. - Heart and Circ. Physiol. 295–6, 2560–2572 (2008)CrossRefGoogle Scholar
  20. S.I.B.F. Wilkinson, I.M. Jansen, J.C. Spratt, G.D. Murray, J.R. Cockcroft, D. Webb, Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J. Hypertens. 16, 2079–2084 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Michael Theodor
    • 1
    Email author
  • Dominic Ruh
    • 1
  • Jens Fiala
    • 1
  • Katharina Förster
    • 2
  • Claudia Heilmann
    • 2
  • Yiannos Manoli
    • 1
    • 3
  • Friedhelm Beyersdorf
    • 2
  • Hans Zappe
    • 1
  • Andreas Seifert
    • 1
  1. 1.Department of Microsystems EngineeringUniversity of FreiburgFreiburgGermany
  2. 2.Department of Cardiovascular SurgeryUniversity Medical CenterFreiburgGermany
  3. 3.HSG-IMITInstitute of Micromachining and Information TechnologyVillingen-SchwenningenGermany

Personalised recommendations