Advertisement

Biomedical Microdevices

, Volume 15, Issue 5, pp 793–799 | Cite as

Selective bacterial patterning using the submerged properties of microbeads on agarose gel

  • Sung Jun Park
  • Hyeoni Bae
  • Seong Young Ko
  • Jung-Joon Min
  • Jong-Oh ParkEmail author
  • Sukho ParkEmail author
Article

Abstract

We proposed a new bacteria patterning method on the restricted region of microbeads, using the submerged property of polystyrene microbeads on various concentrations of agarose gel. Moreover, we fabricated a bacterial microrobot using attenuated Salmonella typhimurium through the new patterning methods. We controlled the submerged degree of polystyrene microbeads through the regulation of the hardness of the agarose gel. The polystyrene microbeads on agarose gel were transferred onto a poly-dimethylsiloxane (PDMS) surface for easy manipulation of the microbeads. Then, we treated the polystyrene microbeads on the PDMS surface with antibacterial adherent factors, such as O2 plasma and bovine serum albumin (BSA). The Salmonella typhimurium was attached to the entire surface of the untreated polystyrene microbeads, whereas Salmonella typhimurium were only attached to the restricted surface region of the treated polystyrene microbeads through the proposed patterning method. The bacteria-attached microbeads gain motility by the propulsion of the attached bacteria, and the selective-bacteria-attached microbeads showed enhanced motility. Compared with whole-bacteria-attached polystyrene microbeads (1.74 ± 1.62 μm/s), the selective bacteria-attached polystyrene microbeads, using O2 plasma and BSA, showed 9.18 ± 1.88 μm/s and 14.65 ± 8.66 μm/s faster moving velocities, respectively. Through the results, we expected that the proposed patterning methodology of microbeads could contribute to the development of biomedical bacterial microrobots.

Keywords

Bacteria Patterning Microrobot Motility Agarose 

Notes

Acknowledgments

This research was supported by the Future Pioneer R&D program through the National Research Foundation of Korea, funded by the Ministry of Education, Science, and Technology (2010-0002240).

Supplementary material

10544_2013_9765_MOESM1_ESM.jpg (1.9 mb)
S 1 Confocal microscopic Z stack images of S. typhimurium attachment on untreated PS microbead surfaces. (Scale bars = 20 μm). (JPEG 1992 kb)
10544_2013_9765_MOESM2_ESM.jpg (2 mb)
S 2 Confocal microscopic time lapse images of S. typhimurium attachment on untreated PS microbead surfaces. (Scale bars = 20 μm). (JPEG 2013 kb)
10544_2013_9765_Fig6_ESM.jpg (115 kb)
S 3

Mean squared displacements of Untreated microbead, BSA-coated microbead and O2 plasma-exposed PS microbead. Stochastic function was fitted to this data set (JPEG 115 kb)

10544_2013_9765_MOESM3_ESM.tif (120.9 mb)
High resolution image (TIFF 123811 kb)
ESM 4

(AVI 1163 kb)

ESM 5

(AVI 1037 kb)

ESM 6

(AVI 773 kb)

ESM 7

(AVI 481 kb)

ESM 8

(AVI 433 kb)

References

  1. J.J. Abbott, Z. Nagy, F. Beyeler, B.J. Nelson, IEEE Robot. Autom. Mag. 14, 92 (2007)CrossRefGoogle Scholar
  2. B. Behkam, M. Sitti, Proc. IEEE Eng. Med. Biol. Soc. 1, 2421 (2006)Google Scholar
  3. B. Behkam, M. Sitti, Appl. Phys. Lett. 93, 223901 (2008)CrossRefGoogle Scholar
  4. H.C. Berg, Annu. Rev. Biochem. 72, 19 (2003)CrossRefGoogle Scholar
  5. S. Bouadiat, C. Berendsen, P. Thomsen, S.G. Petersen, A. Wolff, J. Jonsmann, Lab Chip 4, 632 (2004)CrossRefGoogle Scholar
  6. J.D. Bronzino, The Biomedical Engineering Handbook, 3rd edn. (Taylor & Francis, 2006)Google Scholar
  7. A. Cavalcanti, R.A. Freitas Jr., IEEE Trans. Nanobiosci. 4, 133 (2005)CrossRefGoogle Scholar
  8. A. Cerf, C. Vieu, INTECH Chapter 22, 447 (2010)Google Scholar
  9. H. Choi, J. Choi, G. Jang, J. Park, S. Park, Smart Mater. Struct. 18, 055007 (2009)CrossRefGoogle Scholar
  10. N. Darnton, L. Turner, K. Breuer, H.C. Berg, Biophys. J. 86, 1863 (2004)CrossRefGoogle Scholar
  11. M. Eisenbach, Encyclopedia of Life Sciences 1 (2001)Google Scholar
  12. S. Floyd, C. Pawashe, M. Sitti, IEEE Trans. Robot. 25, 1332 (2009)CrossRefGoogle Scholar
  13. R.A. Freitas Jr., Biotechnology 26, 441 (1998)Google Scholar
  14. H.M. Haruff, J. Munakata-Marr, D.W.M. Marr, Biointerfaces 27, 189 (2003)CrossRefGoogle Scholar
  15. A. Hejazi, F.R. Falkiner, J. Med. Microbiol. 46, 903 (1997)CrossRefGoogle Scholar
  16. J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)CrossRefGoogle Scholar
  17. J.F. Jones, J.D. Feick, D. Imoudu, N. Chukwumah, M. Vigeant, D. Velegol, Appl. Environ. Microbiol. 69, 6515 (2003)CrossRefGoogle Scholar
  18. C.T. Lefèvre, A. Bernadac, K. Yu-Zhang, N. Pradel, L. Wu, Environ. Microbiol. 11, 1646 (2009)CrossRefGoogle Scholar
  19. W. Lin, J. Li, Y. Pan, Appl. Environ. Microbiol. 78, 668 (2012)CrossRefGoogle Scholar
  20. M.C.M. Loosdrecht, J. Lyklema, W. Norde, A.J.B. Zehnder, Microb. Ecol. 17, 1 (1989)CrossRefGoogle Scholar
  21. S. Martel, Proc. Int. Conf. Microtech. Med. Biol. 89 (2006)Google Scholar
  22. S. Martel, M. Mohammadi, O. Felfoul, Z. Lu, P. Pouponneau, Int. J. Robot. Res. 28, 571 (2009)CrossRefGoogle Scholar
  23. J. Min, V.H. Nguyen, H. Kim, Y. Hong, H. Choy, Nat. Protoc. 3, 629 (2008)CrossRefGoogle Scholar
  24. S. Park, H. Bae, J. Kim, B. Lim, J. Park, S. Park, Lab Chip 10, 1706 (2010)CrossRefGoogle Scholar
  25. A.A.G. Requicha, IEEE Spec. Issue Nanoelectron. Nanoprocess. 91, 1922 (2003)Google Scholar
  26. B. Rowan, M.A. Wheeler, R.M. Crooks, Langmuir 18, 9914 (2002)CrossRefGoogle Scholar
  27. R.M. Ryan, J. Green, C.E. Lewis, Bioessays 28, 84 (2006)CrossRefGoogle Scholar
  28. M.S. Sakar, E.B. Steager, D. Kim, A.A. Julius, M. Kim, V. Kumar, G.J. Pappas, Int. J. Robot. Res. 30, 647 (2008)CrossRefGoogle Scholar
  29. N.N. Sharma, R.K. Mittal, Int. J. Smart Sens. Intell. Syst. 1, 87 (2008)zbMATHGoogle Scholar
  30. M. Siegel, IEEE Instrum. Meas. Technol. Conf. 303 (2001)Google Scholar
  31. M. Sitti, Proceedings of the 2004 American Control Conference 1 (2004)Google Scholar
  32. E. Steager, C.B. Kim, J. Patel, S. Bith, C. Naik, L. Reber, M.J. Kim, Appl. Phys. Lett. 90, 263901 (2007)CrossRefGoogle Scholar
  33. E.B. Steager, M.S. Sakar, D.H. Kim, V. Kumar, G.J. Pappas, M.J. Kim, J. Micromech. Microeng. 21, 035001 (2011)CrossRefGoogle Scholar
  34. A. Zita, M. Hermansson, Appl. Environ. Microbiol. 60, 3041 (1994)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Mechanical EngineeringChonnam National UniversityGwangjuKorea
  2. 2.Nuclear MedicineChonnam National UniversityGwangjuKorea

Personalised recommendations