Advertisement

Biomedical Microdevices

, Volume 15, Issue 3, pp 553–560 | Cite as

Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting

  • Liang Wu
  • Pu Chen
  • Yingsong Dong
  • Xiaojun FengEmail author
  • Bi-Feng Liu
Article

Abstract

Encapsulation of single cells is a challenging task in droplet microfluidics due to the random compartmentalization of cells dictated by Poisson statistics. In this paper, a microfluidic device was developed to improve the single-cell encapsulation rate by integrating droplet generation with fluorescence-activated droplet sorting. After cells were loaded into aqueous droplets by hydrodynamic focusing, an on-flight fluorescence-activated sorting process was conducted to isolate droplets containing one cell. Encapsulation of fluorescent polystyrene beads was investigated to evaluate the developed method. A single-bead encapsulation rate of more than 98 % was achieved under the optimized conditions. Application to encapsulate single HeLa cells was further demonstrated with a single-cell encapsulation rate of 94.1 %, which is about 200 % higher than those obtained by random compartmentalization. We expect this new method to provide a useful platform for encapsulating single cells, facilitating the development of high-throughput cell-based assays.

Keywords

Microfluidic chip Droplet Flow focusing Fluorescence-activated droplet sorting Encapsulation HeLa cell 

Notes

Acknowledgments

The authors gratefully acknowledge the financial supports from National Basic Research Program of China (2011CB910403), National High Technology Research and Development Program of China (2011AA02A103) and National Natural Science Foundation of China (31070770).

Supplementary material

10544_2013_9754_MOESM1_ESM.doc (6.6 mb)
ESM 1 (DOC 6787 kb)
ESM 2

(MPG 1186 kb)

ESM 3

(MPG 1476 kb)

References

  1. A.R. Abate, C.H. Chen, J.J. Agresti, D.A. Weitz, Lab Chip 9, 2628–2631 (2009)CrossRefGoogle Scholar
  2. A.R. Abate, J.J. Agresti, D.A. Weitz, Appl. Phys. Lett. 96, 203509 (2010)CrossRefGoogle Scholar
  3. K. Ahn, C. Kerbage, T.P. Hunt, R.M. Westervelt, D.R. Link, D.A. Weitz, Appl. Phys. Lett. 88, 024104 (2006)CrossRefGoogle Scholar
  4. S.L. Anna, N. Bontoux, H.A. Stone, Appl. Phys. Lett. 82, 364–366 (2003)CrossRefGoogle Scholar
  5. L. Baraban, F. Bertholle, M.L.M. Salverda, N. Bremond, P. Panizza, J. Baudry, J. de Visser, J. Bibette, Lab Chip 11, 4057–4062 (2011)CrossRefGoogle Scholar
  6. J.C. Baret, O.J. Miller, V. Taly, M. Ryckelynck, A. El-Harrak, L. Frenz, C. Rick, M.L. Samuels, J.B. Hutchison, J.J. Agresti, D.R. Link, D.A. Weitz, A.D. Griffiths, Lab Chip 9, 1850–1858 (2009)CrossRefGoogle Scholar
  7. C.N. Baroud, J.P. Delville, F. Gallaire, R. Wunenburger, Phys. Rev. E 75, 046302 (2007)CrossRefGoogle Scholar
  8. J.Q. Boedicker, L. Li, T.R. Kline, R.F. Ismagilov, Lab Chip 8, 1265–1272 (2008)CrossRefGoogle Scholar
  9. E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J.B. Hutchison, J.M. Rothberg, D.R. Link, N. Perrimon, M.L. Samuels, Proc. Natl. Acad. Sci. U. S. A. 106, 14195–14200 (2009)CrossRefGoogle Scholar
  10. M. Chabert, J.L. Viovy, Proc. Natl. Acad. Sci. U. S. A. 105, 3191–3196 (2008)CrossRefGoogle Scholar
  11. P. Chen, X. Feng, W. Du, B.F. Liu, Front. Biosci. 13, 2464–2483 (2008)CrossRefGoogle Scholar
  12. P. Chen, X. Feng, R. Hu, J. Sun, W. Du, B.-F. Liu, Anal. Chim. Acta 663, 1–6 (2010a)CrossRefGoogle Scholar
  13. P. Chen, X. Feng, J. Sun, Y. Wang, W. Du, B.-F. Liu, Lab Chip 10, 1472–1475 (2010b)CrossRefGoogle Scholar
  14. C.H. Choi, J.H. Jung, Y.W. Rhee, D.P. Kim, S.E. Shim, C.S. Lee, Biomed. Microdevices 9, 855–862 (2007)CrossRefGoogle Scholar
  15. J. Clausell-Tormos, D. Lieber, J.C. Baret, A. El-Harrak, O.J. Miller, L. Frenz, J. Blouwolff, K.J. Humphry, S. Koster, H. Duan, C. Holtze, D.A. Weitz, A.D. Griffiths, C.A. Merten, Chem. Biol. 15, 427–437 (2008)CrossRefGoogle Scholar
  16. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974–4984 (1998)CrossRefGoogle Scholar
  17. J.F. Edd, D. Di Carlo, K.J. Humphry, S. Koster, D. Irimia, D.A. Weitz, M. Toner, Lab Chip 8, 1262–1264 (2008)CrossRefGoogle Scholar
  18. L.M. Fidalgo, G. Whyte, D. Bratton, C.F. Kaminski, C. Abell, W.T.S. Huck, Angew. Chem. Int. Ed. 47, 2042–2045 (2008)CrossRefGoogle Scholar
  19. T. Franke, A.R. Abate, D.A. Weitz, A. Wixforth, Lab Chip 9, 2625–2627 (2009)CrossRefGoogle Scholar
  20. A.L. Givan, Flow Cytometry First Principles, 2nd edn. (Wiley-Liss, Inc, New York, 2001), pp. 162–163CrossRefGoogle Scholar
  21. M.Y. He, J.S. Edgar, G.D.M. Jeffries, R.M. Lorenz, J.P. Shelby, D.T. Chiu, Anal. Chem. 77, 1539–1544 (2005)CrossRefGoogle Scholar
  22. S. Ishii, K. Tago, K. Senoo, Appl. Microbiol. Biotechnol. 86, 1281–1292 (2010)CrossRefGoogle Scholar
  23. S. Koster, F.E. Angile, H. Duan, J.J. Agresti, A. Wintner, C. Schmitz, A.C. Rowat, C.A. Merten, D. Pisignano, A.D. Griffiths, D.A. Weitz, Lab Chip 8, 1110–1115 (2008)CrossRefGoogle Scholar
  24. D.R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z.D. Cheng, G. Cristobal, M. Marquez, D.A. Weitz, Angew. Chem. Int. Ed. 45, 2556–2560 (2006)CrossRefGoogle Scholar
  25. R.M. Lorenz, J.S. Edgar, G.D.M. Jeffries, D.T. Chiu, Anal. Chem. 78, 6433–6439 (2006)CrossRefGoogle Scholar
  26. D. Pappas, K. Wang, Anal. Chim. Acta 601, 26–35 (2007)CrossRefGoogle Scholar
  27. J.U. Shim, L.F. Olguin, G. Whyte, D. Scott, A. Babtie, C. Abell, W.T.S. Huck, F. Hollfelder, J. Am, Chem. Soc. 131, 15251–15256 (2009)CrossRefGoogle Scholar
  28. H. Song, D.L. Chen, R.F. Ismagilov, Angew. Chem. Int. Ed. 45, 7336–7356 (2006)CrossRefGoogle Scholar
  29. J. Sun, P. Chen, X. Feng, W. Du, B.-F. Liu, Biosens. Bioelectron. 26, 3413–3419 (2011)CrossRefGoogle Scholar
  30. W. Tan, S. Adv, Mater. 19, 2696–2701 (2007)Google Scholar
  31. S.Y. Teh, R. Lin, L.H. Hung, A.P. Lee, Lab Chip 8, 198–220 (2008)CrossRefGoogle Scholar
  32. A.B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, W.T.S. Huck, Angew. Chem. Int. Ed. 49, 5846–5868 (2010)Google Scholar
  33. T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Phys. Rev. Lett. 86, 4163–4166 (2001)CrossRefGoogle Scholar
  34. Y.N. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153–184 (1998)CrossRefGoogle Scholar
  35. C.-G. Yang, Z.-R. Xu, J.-H. Wang, Trends Anal. Chem. 29, 141–157 (2010)CrossRefGoogle Scholar
  36. H. Yin, D. Marshall, Curr. Opin. Biotech. 23, 110–119 (2012)CrossRefGoogle Scholar
  37. L.F. Yu, M.C.W. Chen, K.C. Cheung, Lab Chip 10, 2424–2432 (2010)CrossRefGoogle Scholar
  38. Y.H. Zhan, J. Wang, N. Bao, C. Lu, Anal. Chem. 81, 2027–2031 (2009)CrossRefGoogle Scholar
  39. K. Zhang, Q. Liang, S. Ma, X. Mu, P. Hu, Y. Wang, G. Luo, Lab Chip 9, 2992–2999 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Liang Wu
    • 1
  • Pu Chen
    • 1
  • Yingsong Dong
    • 1
  • Xiaojun Feng
    • 1
    Email author
  • Bi-Feng Liu
    • 1
  1. 1.Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations