Biomedical Microdevices

, Volume 15, Issue 2, pp 369–379 | Cite as

Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds

  • Cho-Pei JiangEmail author
  • Yo-Yu Chen
  • Ming-Fa Hsieh
  • Hung-Maan Lee


Bone tissue engineering is an emerging approach to provide viable substitutes for bone regeneration. Poly(ethylene glycol) (PEG) is a good candidate of bone scaffold because of several advantages such as hydrophilicity, biocompatibility, and intrinsic resistance to protein adsorption and cell adhesion. However, its low compressive strength limits application for bone regeneration. Poly(ε-caprolactone) (PCL), a hydrophobic nonionic polymer, is adopted to enhance the compressive strength of PEG alone.We aimed to investigate the in-vitro response of osteoblast-like cells cultured with porous scaffolds of triblock PEG-PCL-PEG copolymer fabricated by an air pressure-aided deposition system. A desktop air pressure-aided deposition system that involves melting and plotting PEG-PCL-PEG was used to fabricate three-dimensional scaffolds having rectangular pores. The experimental results showed that PEG-PCL-PEG with a molecular weight of 25,000 can be melted and stably deposited through a heating nozzle at an air pressure of 0.3 MPa and no crack occurs after it solidifies. The scaffolds with pre-determined pore size of 400× 420 μm and a porosity of 79 % were fabricated, and their average compressive strength was found to be 18.2 MPa. Osteoblast-like cells, MC3T3-E1, were seeded on fabricated scaffolds to investigate the in-vitro response of cells including toxicity and cellular locomotion. In a culture period of 28 days, the neutral-red stained osteoblasts were found to well distributed in the interior of the scaffold. Furthermore, the cellular attachment and movement in the first 10 h of cell culture were observed with time-lapse microscopy indicating that the porous PEG-PCL-PEG scaffolds fabricated by air pressure-aided deposition system is non-toxicity for osteoblast-like cells.


Poly(ethylene glycol) Poly(ε-caprolactone) Scaffold Osteoblast Solid freeform fabrication 



The authors acknowledge gratefully the financial support from the National Science Council under Grant no. 98-2622-E-150-015-CC3.

Supplementary material

10544_2013_9740_MOESM1_ESM.ppt (34.9 mb)
ESM 1 (PPT 35742 kb)


  1. C.D. Chin, K. Khanna, S.K. Sia, Biomed. Microdevices 10, 459 (2008)CrossRefGoogle Scholar
  2. K.B. Chirag, R.P. Shelly, J.P. Andrew, Am. J. Physiol. Cell Physiol. 290, C1640–C1650 (2006)CrossRefGoogle Scholar
  3. C. Choi, S.Y. Chae, T.H. Kim, M.K. Jang, C.S. Cho, J.W. Nah, Bull. Korean Chem. Soc. 26, 4 (2005)Google Scholar
  4. N.-V. Cuong, M.-F. Hsieh, Y.-T. Chen, L. Ian, J. Biomater. Sci. Polym. Ed. 22, 1409 (2011)CrossRefGoogle Scholar
  5. N.-V. Cuong, Y.-L. Li, M.-F. Hsieh, J. Mater. Chem. 22, 1006 (2012)CrossRefGoogle Scholar
  6. C.P. Foley, N. Nishimura, K.B. Neeves, C.B. Schaffer, W.L. Olbricht, Biomed. Microdevices 11, 915 (2009)CrossRefGoogle Scholar
  7. C.Y. Gong, P.W. Dong, S. Shi, S.Z. Fu, J.L. Yang, G. Guo, X. Zhao, Y.Q. Wei, Z.Y. Qian, J. Pharm. Sci. 98, 3707 (2009)CrossRefGoogle Scholar
  8. Y. Hu, D.W. Grainger, S.R. Winn, J.O. Hollinger, J. Biomed. Mater. Res. 59, 563 (2002)CrossRefGoogle Scholar
  9. M.J. Hwang, M.K. Joo, B.G. Choi, M.H. Park, I.W. Hamley, B. Jeong, Macromol. Rapid Commun. 31, 2064 (2010)CrossRefGoogle Scholar
  10. V. Karageorgiou, D. Kaplan, Biomaterials 26, 5474 (2005)CrossRefGoogle Scholar
  11. H.W. Kim, J.C. Knowles, H.E. Kim, Biomaterials 25, 1279 (2004)CrossRefGoogle Scholar
  12. J.J. Lee, S.G. Lee, J.C. Park, Y.I. Yang, J.K. Kim, Curr. Appl. Phys. 7, 37 (2007)CrossRefGoogle Scholar
  13. S.J. Lee, H.W. Kang, J.K. Park, J.W. Rhie, S.K. Hahn, D.W. Cho, Biomed. Microdevices 10, 233 (2008)CrossRefGoogle Scholar
  14. C. Lu, S.R. Guo, Y. Zhang, Z. Li, J. Gu, Eur. Polym. J. 43, 1857 (2007)CrossRefGoogle Scholar
  15. A.K. Michael, Biomaterials 25, 1697 (2004)CrossRefGoogle Scholar
  16. A. Nakahira, T. Murakami, T. Onoki, T. Hashida, J. Am. Ceram. Soc. 88, 1334 (2005)CrossRefGoogle Scholar
  17. S.H. Oh, I.K. Park, J.M. Kim, J.H. Lee, Biomaterials 28, 1664 (2007)CrossRefGoogle Scholar
  18. S.J. Park, Y.J. Yang, H.B. Lee, Colloids Surf. B 38, 35 (2004)CrossRefGoogle Scholar
  19. S.R. Peyton, C.M. Ghajar, C.B. Khatiwala, A.J. Putnam, Cell Biochem. Biophys. 47, 300–320 (2007)CrossRefGoogle Scholar
  20. C.A. Reinhart-King, M. Dembo, D.A. Hammer, Biophys. J. 95, 6044–6051 (2008)CrossRefGoogle Scholar
  21. M. Schieker, H. Seitz, I. Drosse, S. Seitz, W. Mutschler, European Journal of Trauma, 114 (2006)Google Scholar
  22. L. Shor, E.D. Yildirim, S. Güçeri, W. Sun, Precision Extruding Deposition for Freeform Fabrication of PCL and PCL-HA Tissue Scaffolds, Printed Biomaterials, 91–110 (2010)Google Scholar
  23. N. Specchia, A. Pagnotta, M. Cappella, A. Tampieri, F. Greco, J. Mater. Sci. 37, 577 (2002)CrossRefGoogle Scholar
  24. G.J. Wang, Y.C. Lin, S.H. Hsu, Biomed. Microdevices 12, 841 (2010)CrossRefGoogle Scholar
  25. H.J. Yen, C.S. Tseng, S.H. Hsu, C.L. Tsai, Biomed. Microdevices 11, 615 (2009)CrossRefGoogle Scholar
  26. Y. Zhu, C. Gao, J. Shen, Biomaterials 23, 4889 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Cho-Pei Jiang
    • 1
    Email author
  • Yo-Yu Chen
    • 2
  • Ming-Fa Hsieh
    • 3
  • Hung-Maan Lee
    • 4
  1. 1.Department of Power Mechanical EngineeringNational Formosa UniversityYunlin CountyTaiwan
  2. 2.Institute of Mechanical and Electro-Mechanical EngineeringNational Formosa UniversityYunlin CountyTaiwan
  3. 3.Department of Biomedical EngineeringChung Yuan Christian UniversityChung LiTaiwan
  4. 4.Hualien Armed Forces General HospitalHualienTaiwan

Personalised recommendations