Biomedical Microdevices

, Volume 14, Issue 6, pp 969–977 | Cite as

Cardiomyocyte-driven gel network for bio mechano-informatic wet robotics

  • Takayuki Hoshino
  • Kentaro Imagawa
  • Yoshitake Akiyama
  • Keisuke MorishimaEmail author


This paper reports on a cellular mechano-informatics network gel robot which was powered by culturing cardiomyocytes in the micro gel structure. Contraction activities propagated through the cardiomyocyte gel network will transmit a spatial mechanical wave as information about the chemical and mechanical responses to environmental changes. The cardiomyocyte gel network robot transmits electrically excited potential and mechanical stretch-induced contractions as information carried on the gel network. The cardiomyocyte gel network robot was fabricated from a mixture of primary cardiomyocytes and collagen gel and molded in a PDMS casting mold, which could produce serial, parallel lattice, or radial pattern networks. Fluorescent calcium imaging showed that the calcium activity of the cardiomyocytes in the gel network was segmented in small domains in the gel network; however, the local contraction that started on one branch of the gel network was propagated to a neighboring branch, and the propagation velocity was increased with increasing concentration of adrenaline. This increase was limited to ~20 mm/s. This proposed mechano-informatics kineticism will provide not only mechano-informatics for cardiomyocyte powered wet robotics but will also help show how cardiac disease occurs in activity propagation systems.


Cardiomyocyte Hydrogel Cellular network Bio computing Bioactuator Wet robotics 



This work was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan (Nos. 21676002, 21111503, 21225007 and 23111705), the MEXT project, “Creating Hybrid Organs of the future” at Osaka University, and the Industrial Technology Research Grant Program from the New Energy and Industrial Technology Development Organization (NEDO) of Japan, the Foundation of the Advanced Technology Institute, and NEC C&C Foundation.

Supplementary material


Lattice nine-node cardiomyocyte gel network. Each end of the network was pinned on the substrate. The width of capture size in the movie was 6.1 mm. (AVI 1,785 kb)


Serial cardiomyocyte gel. Freestanding cardiomyocyte gel peeled from a casting mold. The width of capture size in the movie was 3.9 mm. (AVI 802 kb)


  1. P. Camelliti, T.K. Borg, P. Kohl, Cardiovasc. Res. 65, 40 (2005)CrossRefGoogle Scholar
  2. T.P. de Boer, H.V.M. van Rijen, M.A.G. van der Heyden, J.M.T. de Bakker, T.A.B. van Veen, Neth. Heart J. 16, 106 (2008)CrossRefGoogle Scholar
  3. T. Eschenhagen, M. Didie, J. Heubach, U. Ravens, W.-H. Zimmermann, Transpl. Immunol. 9, 315 (2002)CrossRefGoogle Scholar
  4. A.W. Feinberg, A. Feigel, S.S. Shevkoplyas, S. Sheehy, G.M. Whitesides, K.K. Parker, Science 317, 1366 (2007)CrossRefGoogle Scholar
  5. H. Horiguchi, K. Imagawa, T. Hoshino, Y. Akiyama, K. Morishima, IEEE T. Nanobiosci. 8, 349 (2009)CrossRefGoogle Scholar
  6. Y. Itabashi, S. Miyoshi, S. Yuasa, J. Fujita, T. Shimizu, T. Okano, K. Fukuda, S. Ogawa, Cardiovasc. Res. 67, 561 (2005)CrossRefGoogle Scholar
  7. T. Kaneko, K. Kojima, K. Yasuda, Biochem. Biophys. Res. Commun. 356, 494 (2007)CrossRefGoogle Scholar
  8. A.M. Katz, Physiology of the Heart (Lippincott Williams & Wilkins, 2006).Google Scholar
  9. J. Kim, J. Park, S. Yang, J. Baek, B. Kim, S.H. Lee, E.-S. Yoon, K. Chun, S. Park, Lab Chip 7, 1504 (2007)CrossRefGoogle Scholar
  10. P. Kohl, D. Noble, Cardiovasc. Res. 32, 62 (1996)Google Scholar
  11. P. Kohl, A.G. Kamkin, I.S. Kiseleva, D. Noble, Exp. Physiol. 79, 943 (1994)Google Scholar
  12. P. Kohl, P. Camelliti, F.L. Burton, G.L. Smith, J. Electrocardiol. 38, 45 (2005)CrossRefGoogle Scholar
  13. K. Kojima, T. Kaneko, K. Yasuda, Biochem. Biophys. Res. Commun. 351, 209 (2006)CrossRefGoogle Scholar
  14. J. Konhilas, T. Irving, P. de Tombe, Pflüg. Arch. Eur. J. Physiol. 445, 305 (2002)CrossRefGoogle Scholar
  15. H. Naito, I. Melnychenko, M. Didie, K. Schneiderbanger, P. Schubert, S. Rosenkranz, T. Eschenhagen, W.-H. Zimmermann, Circulation 114, I–72 (2006)CrossRefGoogle Scholar
  16. S. Rohr, Hear. Rhythm. 6, 848 (2009)CrossRefGoogle Scholar
  17. Y. Tanaka, K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, T. Kitamori, Lab Chip 6, 362 (2006a)CrossRefGoogle Scholar
  18. Y. Tanaka, K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, T. Kitamori, Lab Chip 6, 230 (2006b)CrossRefGoogle Scholar
  19. J. Xi, J.J. Schmidt, C.D. Montemagno, Nat. Mater. 4, 180 (2005)CrossRefGoogle Scholar
  20. W.-H. Zimmermann, K. Schneiderbanger, P. Schubert, M. Didie, F. Munzel, J.F. Heubach, S. Kostin, W.L. Neuhuber, T. Eschenhagen, Circ. Res. 90, 223 (2002)CrossRefGoogle Scholar
  21. H. Zimmermann, F. Ehrhart, D. Zimmermann, K. Müller, A. Katsen-Globa, M. Behringer, P.J. Feilen, P. Gessner, G. Zimmermann, S.G. Shirley, M.M. Weber, J. Metze, U. Zimmermann, Appl. Phys. Mater. Sci. Process. 89, 909 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Takayuki Hoshino
    • 1
  • Kentaro Imagawa
    • 2
  • Yoshitake Akiyama
    • 1
  • Keisuke Morishima
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringOsaka UniversityOsakaJapan
  2. 2.Department of Mechanical System EngineeringTokyo University of Agriculture and TechnologyTokyoJapan

Personalised recommendations