Biomedical Microdevices

, Volume 15, Issue 1, pp 171–181 | Cite as

Sacrificial layer technique for axial force post assay of immature cardiomyocytes

  • Rebecca E. Taylor
  • Keekyoung Kim
  • Ning Sun
  • Sung-Jin Park
  • Joo Yong Sim
  • Giovanni Fajardo
  • Daniel Bernstein
  • Joseph C. Wu
  • Beth L. PruittEmail author


Immature primary and stem cell-derived cardiomyocytes provide useful models for fundamental studies of heart development and cardiac disease, and offer potential for patient specific drug testing and differentiation protocols aimed at cardiac grafts. To assess their potential for augmenting heart function, and to gain insight into cardiac growth and disease, tissue engineers must quantify the contractile forces of these single cells. Currently, axial contractile forces of isolated adult heart cells can only be measured by two-point methods such as carbon fiber techniques, which cannot be applied to neonatal and stem cell-derived heart cells because they are more difficult to handle and lack a persistent shape. Here we present a novel axial technique for measuring the contractile forces of isolated immature cardiomyocytes. We overcome cell manipulation and patterning challenges by using a thermoresponsive sacrificial support layer in conjunction with arrays of widely separated elastomeric microposts. Our approach has the potential to be high-throughput, is functionally analogous to current gold-standard axial force assays for adult heart cells, and prescribes elongated cell shapes without protein patterning. Finally, we calibrate these force posts with piezoresistive cantilevers to dramatically reduce measurement error typical for soft polymer-based force assays. We report quantitative measurements of peak contractile forces up to 146 nN with post stiffness standard error (26 nN) far better than that based on geometry and stiffness estimates alone. The addition of sacrificial layers to future 2D and 3D cell culture platforms will enable improved cell placement and the complex suspension of cells across 3D constructs.


Force posts Thermoresponsive Sacrificial layer Cardiomyocytes PDMS Stem cells 



The authors acknowledge support from the National Science Foundation (EFRI-CBE 073555, EFRI-MIKS 1136790, ECS-0449400), the National Institutes of Health (R33 HL089027, RC1 HL099117, RC1AG036142, R01 EB006745, R01 HL061535, and DP2OD004437), the California Institute for Regenerative Medicine (CIRM RC1-00151-1, CIRM RB3-05129, and CIRM TR3-05556), Stanford Center for Integrated Systems, Stanford University (Bio-X Interdisciplinary Initiatives Award, Bio-X Graduate Fellowships, Ilju foundation scholarship, Stanford Graduate Fellowship and a Stanford DARE Doctoral Fellowship), and Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Supplementary material


Beating primary neonatal rat cardiomyocyte on force sensor (MPG 1,062 kb)


Beating hESC-derived cardiomyocyte on force sensor (MPG 460 kb)


  1. O.J. Abilez, J. Wong, R. Prakash, K. Deisseroth, C.K. Zarins, E. Kuhl, Biophys. J. 101, 6 (2011)CrossRefGoogle Scholar
  2. D. Armani, C. Liu, N. Aluru, Re-configurable fluid circuits by PDMS elastomer micromachining. Proc. IEEE MEMS. (1999)Google Scholar
  3. C. Bollensdorff, O. Lookin, P. Kohl, Pflüg. Arch. Eur. J. Phy. 462, 1 (2011)CrossRefGoogle Scholar
  4. A.J. Brady, S.T. Tan, N.V. Ricchiuti, Nature 282, 5740 (1979)CrossRefGoogle Scholar
  5. M.-A. Bray, S.P. Sheehy, K.K. Parker, Cell Motil. Cytoskeleton 65, 8 (2008)CrossRefGoogle Scholar
  6. J.P. Butler, I.M. Tolić-Nørrelykke, B. Fabry, J.J. Fredberg, Am. J. Physiol. Cell Physiol. 282, 3 (2002)Google Scholar
  7. K. Campbell, Pflüg. Arch. Eur. J. Phy. 462, 1 (2011)CrossRefGoogle Scholar
  8. O. Cazorla, A. Lacampagne, Pflüg. Arch. Eur. J. Phy. 462, 1 (2011)CrossRefGoogle Scholar
  9. Q. Cheng, Z. Sun, G.A. Meininger, M. Almasri, Rev. Sci. Instrum. 81, 10 (2010)Google Scholar
  10. G. Constantinides, Z.I. Kalcioglu, M. McFarland, J.F. Smith, K.J. Van Vliet, J. Biomech. 41, 15 (2008)CrossRefGoogle Scholar
  11. M. Curtis, B. Russell, Pflüg. Arch. Eur. J. Phy. 462, 1 (2011)CrossRefGoogle Scholar
  12. M. Dembo, T. Oliver, A. Ishihara, K. Jacobson, Biophys. J. 70, 4 (1996)CrossRefGoogle Scholar
  13. A.J. Engler, C. Carag-Krieger, C.P. Johnson, M. Raab, H.-Y. Tang, D.W. Speicher, J.W. Sanger, J.M. Sanger, D.E. Discher, J. Cell Sci. 121, 22 (2008)CrossRefGoogle Scholar
  14. A. Fabiato, J. Gen. Physiol. 78, 5 (1981)CrossRefGoogle Scholar
  15. A.W. Feinberg, A. Feigel, S.S. Shevkoplyas, S. Sheehy, G.M. Whitesides, K.K. Parker, Science 317, 5843 (2007)CrossRefGoogle Scholar
  16. D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, P. Schiavone, Microelectron. Eng. 85(5), Äì6 (2008)CrossRefGoogle Scholar
  17. M. Ghibaudo, J.-M. Di Meglio, P. Hersen, B. Ladoux, Lab Chip 11, 5 (2011)CrossRefGoogle Scholar
  18. A. Grosberg, P.W. Alford, M.L. McCain, K.K. Parker, Lab Chip 11, 24 (2011)CrossRefGoogle Scholar
  19. G. Iribe, M. Helmes, P. Kohl, Am. J. Physiol. Heart Circ. Physiol. 292, 3 (2007)Google Scholar
  20. J.P. Holman (McGraw-Hill College, 1988)Google Scholar
  21. J.G. Jacot, A.D. McCulloch, J.H. Omens, Biophys. J. 95, 7 (2008)CrossRefGoogle Scholar
  22. J.G. Jacot, H. Kita-Matsuo, K.A. Wei, H.S. Vincent Chen, J.H. Omens, M. Mercola, A.D. McCulloch, Ann. N. Y. Acad. Sci. 1188, 1 (2010)CrossRefGoogle Scholar
  23. A. Kajzar, C.M. Cesa, N. Kirchgeflner, B. Hoffmann, R. Merkel, Biophys. J. 94, 5 (2008)CrossRefGoogle Scholar
  24. K. Kim, R.E. Taylor, J.Y. Sim, S.-J. Park, J. Norman, G. Fajardo, D. Bernstein, B.L. Pruitt, Micro Nano Lett. 6, 5 (2011)CrossRefGoogle Scholar
  25. N.M.P. King, M. Methawasin, J. Nedrud, N. Harrell, C.S. Chung, M. Helmes, H. Granzier, J. Gen. Physiol. 137, 1 (2011)Google Scholar
  26. E. Kolossov, Z. Lu, I. Drobinskaya, N. Gassanov, Y. Duan, H. Sauer, O. Manzke, W. Bloch, H. Bohlen, J.r. Hescheler, B.K. Fleischmann. Faseb J. (2005)Google Scholar
  27. M.L. Lam, M. Bartoli, W.C. Claycomb, Mol. Cell. Biochem. 229, 1 (2002)CrossRefGoogle Scholar
  28. J.Y. Le Guennec, N. Peineau, J.A. Argibay, K.G. Mongo, D. Garnier, J. Mol. Cell. Cardiol. 22, 10 (1990)Google Scholar
  29. W.R. Legant, A. Pathak, M.T. Yang, V.S. Deshpande, R.M. McMeeking, C.S. Chen, Proc. Natl. Acad. Sci. U. S. A. 106, 25 (2009)CrossRefGoogle Scholar
  30. G. Lin, K.S.J. Pister, K.P. Roos, J. Electrochem. Soc. 142, 3 (1995)CrossRefGoogle Scholar
  31. G. Lin, K.S.J. Pister, K.P. Roos, J. Microelectromech. Syst. 9, 1 (2000)CrossRefGoogle Scholar
  32. Z. Liu, J.L. Tan, D.M. Cohen, M.T. Yang, N.J. Sniadecki, S.A. Ruiz, C.M. Nelson, C.S. Chen, Proc. Natl. Acad. Sci. U. S. A. 107, 22 (2010)CrossRefGoogle Scholar
  33. J.M. Mann, R.H.W. Lam, S. Weng, Y. Sun, J. Fu, Lab Chip 12, 4 (2012)CrossRefGoogle Scholar
  34. A. Mata, A. Fleischman, S. Roy, Biomed. Microdevices 7, 4 (2005)CrossRefGoogle Scholar
  35. M. McCain, K. Parker, Pflüg. Arch. Eur. J. Phy. 462, 1 (2011)CrossRefGoogle Scholar
  36. L. Miao, S. Jianren, S. Ying, B. Christopher, C. Quanfang, J. Micromech. Microeng. 19, 3 (2009)Google Scholar
  37. S. Nishimura, S.-i. Yasuda, M. Katoh, K.P. Yamada, H. Yamashita, Y. Saeki, K. Sunagawa, R. Nagai, T. Hisada, S. Sugiura, Am. J. Physiol. Heart Circ. Physiol. 287(1) (2004)Google Scholar
  38. T. Okano, N. Yamada, H. Sakai, Y. Sakurai, J. Biomed. Mater. Res. 27, 10 (1993)Google Scholar
  39. S.J. Park, M.B. Goodman, B.L. Pruitt, Proc. Natl. Acad. Sci. USA. (2007)Google Scholar
  40. J.R. Pratt, D.T. Smith, D.B. Newell, J.A. Kramar, E. Whetenton, J. Mater. Res. 19, (2004)Google Scholar
  41. A.G. Rodriguez, S.J. Han, M. Regnier, N.J. Sniadecki, Biophys. J. 101, 10 (2011)CrossRefGoogle Scholar
  42. V.L. Roger, A.S. Go, D.M. Lloyd-Jones, R.J. Adams, J.D. Berry, T.M. Brown, M.R. Carnethon, S. Dai, G. de Simone, E.S. Ford, C.S. Fox, H.J. Fullerton, C. Gillespie, K.J. Greenlund, S.M. Hailpern, J.A. Heit, P.M. Ho, V.J. Howard, B.M. Kissela, S.J. Kittner, D.T. Lackland, J.H. Lichtman, L.D. Lisabeth, D.M. Makuc, G.M. Marcus, A. Marelli, D.B. Matchar, M.M. McDermott, J.B. Meigs, C.S. Moy, D. Mozaffarian, M.E. Mussolino, G. Nichol, N.P. Paynter, W.D. Rosamond, P.D. Sorlie, R.S. Stafford, T.N. Turan, M.B. Turner, N.D. Wong, J. Wylie-Rosett, Circulation 123, 4 (2011)CrossRefGoogle Scholar
  43. S. Sivaramakrishnan, E. Ashley, L. Leinwand, J. Spudich, J. Cardiovasc. Transl. Res. 2, 4 (2009)CrossRefGoogle Scholar
  44. N.J. Sniadecki, C.S. Chen, in Microfabricated Silicone Elastomeric Post Arrays for Measuring Traction Forces of Adherent Cells. Methods in Cell Biology, ed. by W. Yu-li and E.D. Dennis (Academic Press, 2007), pp. 313–328Google Scholar
  45. J.L. Tan, J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju, C.S. Chen, Proc. Natl. Acad. Sci. U. S. A. 100, 4 (2003)CrossRefGoogle Scholar
  46. X. Tang, P. Bajaj, R. Bashir, T.A. Saif, Soft Matter 7, (2011)Google Scholar
  47. R.E. Taylor, K. Kim, B.L. Pruitt, Proc Solid State Sens, Actuators, Microsystems Workshop. (Hilton Head, SC., 2010)Google Scholar
  48. R.E. Taylor, A. Ribeiro, G. Fajardo, H. Razavi, D. Bernstein, B.L. Pruitt, Proc MicroTAS. (Seattle, WA., 2011)Google Scholar
  49. M. Théry, J. Cell Sci. 123, 24 (2010)CrossRefGoogle Scholar
  50. M. Théry, A. Pépin, E. Dressaire, Y. Chen, M. Bornens, Cell Motil. Cytoskeleton 63, 6 (2006)CrossRefGoogle Scholar
  51. E. White, Pflüg. Arch. Eur. J. Phy. 462, 1 (2011)CrossRefGoogle Scholar
  52. J. Xi, J.J. Schmidt, C.D. Montemagno, Nat. Mater. 4, 2 (2005)CrossRefGoogle Scholar
  53. W. Xu, N. Chahine, T. Sulchek, Langmuir 27, 13 (2011)Google Scholar
  54. L. Yang, M.H. Soonpaa, E.D. Adler, T.K. Roepke, S.J. Kattman, M. Kennedy, E. Henckaerts, K. Bonham, G.W. Abbott, R.M. Linden, L.J. Field, G.M. Keller, Nature 453, 7194 (2008)Google Scholar
  55. S.-I. Yasuda, S. Sugiura, N. Kobayakawa, H. Fujita, H. Yamashita, K. Katoh, Y. Saeki, H. Kaneko, Y. Suda, R. Nagai, H. Sugi, Am. J. Physiol. Heart. Circ. 281, 3 (2001)Google Scholar
  56. M. Yazawa, B. Hsueh, X. Jia, A.M. Pasca, J.A. Bernstein, J. Hallmayer, R.E. Dolmetsch, Nature 471, 7337 (2011)CrossRefGoogle Scholar
  57. Y. Zhao, X. Zhang, Appl. Phys. Lett. 87, 14 (2005)Google Scholar
  58. Y. Zhao, X. Zhang, Sensor. Actuator. A 125, 2 (2006)CrossRefGoogle Scholar
  59. Y. Zhao, C.C. Lim, D.B. Sawyer, R. Liao, X. Zhang, Cell Motil. Cytoskeleton 64, 9 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rebecca E. Taylor
    • 1
  • Keekyoung Kim
    • 1
    • 2
  • Ning Sun
    • 4
  • Sung-Jin Park
    • 3
  • Joo Yong Sim
    • 1
  • Giovanni Fajardo
    • 2
  • Daniel Bernstein
    • 2
  • Joseph C. Wu
    • 4
  • Beth L. Pruitt
    • 1
    Email author
  1. 1.Department of Mechanical Engineering and Stanford Cardiovascular InstituteStanford UniversityStanfordUSA
  2. 2.Stanford Cardiovascular Institute and Department of Pediatrics (Cardiology)Stanford University School of MedicineStanfordUSA
  3. 3.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  4. 4.Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, and Stanford Institute of Stem Cell Biology & Regenerative MedicineStanford University School of MedicineStanfordUSA

Personalised recommendations