Biomedical Microdevices

, Volume 14, Issue 6, pp 1019–1025 | Cite as

Development of bacteria-based microrobot using biocompatible poly(ethylene glycol)

  • Sunghoon Cho
  • Sung Jun Park
  • Seong Young Ko
  • Jong-Oh ParkEmail author
  • Sukho ParkEmail author


For the development of bacteria-based biomedical microrobot, we propose the fabrication method of biocompatible poly(ethylene glycol) (PEG) microbeads using a cross-junction microfluidic channel. PEG droplets were polymerized by ultraviolet (UV) irradiation to form PEG microbeads of 8.18 ± 3.4 μm diameter in a microfluidic channel. Generally, the bacteria did not attach to the surface of the PEG microbeads because of their hydrophilicity. We modified the selective surface of the PEG microbeads using poly-L-lysine (PLL), promoting attenuated Salmonella typhimurium adhesion using the submerging property of PEG microbeads on agarose gel: the bacteria could thus be attached to the PLL-coated surface region of the PEG microbeads. The selectively PLL-coated PEG microbeads group showed enhanced motility compared with the PLL-uncoated and completely PLL-coated PEG microbeads groups. The selectively PLL-coated PEG microbeads group showed 12.33 and 7.40 times higher average velocities than the PLL-uncoated and completely PLL-coated PEG microbeads groups, respectively. This study verified the successful fabrication of bacteria-based microrobots using PEG microbeads, and the enhanced motility of the microrobots by selective bacteria patterning using agarose gel and PLL.


Poly(ethylene glycol) Salmonella typhimurium Patterning Poly-L-lysine Microrobot 



This research was supported by the Future Pioneer R&D program through the National Research Foundation of Korea, funded by the Ministry of Education, Science, and Technology (2012–0001035).

Supplementary material

10544_2012_9704_Fig6_ESM.jpg (7 kb)
S. 1

Microscopic images about migration of bacteria-based microrobot toward 10 mM Aspartic acid-contained capillary tube. (JPEG 6 kb)

10544_2012_9704_MOESM1_ESM.tif (6.9 mb)
High resolution image (TIFF 7095 kb)
10544_2012_9704_Fig7_ESM.jpg (24 kb)
S. 2

Scanning electron microscopy (SEM) (S-4700, Hitachi, Japan) images of the exposed PEG microbead on PDMS. Submerged PEG microbeads were difficult to obtain a fine image of the PEG microbeads on the agarose gel. After the transfer procedure using the PDMS in Fig. 2(c), we have obtained the fine SEM images of the exposed PEG microbeads on the PDMS according to the 1 (S. 2 A and B) and 0.5 % (S. 2 C and D) agarose. (JPEG 23 kb)

10544_2012_9704_MOESM2_ESM.tif (4.7 mb)
High resolution image (TIFF 4845 kb)

(AVI 13706 kb)


  1. B. Behkam, M. Sitti, Appl. Phys. Lett. 93, 223901 (2008)CrossRefGoogle Scholar
  2. H.C. Berg, Annu. Rev. Biochem. 72, 19 (2003)CrossRefGoogle Scholar
  3. J.D. Bronzino, The Biomedical Engineering Handbook, 3rd edn. (Taylor & Francis, 2006)Google Scholar
  4. H. Choi, J. Choi, G. Jang, J. Park, S. Park, Smart Mater. Struct. 18, 055007 (2009)CrossRefGoogle Scholar
  5. M. Eisenbach, Encycl. Life Sci. 1 (2001)Google Scholar
  6. S. Floyd, C. Pawashe, M. Sitti, IEEE Trans. Robot. 25, 1332 (2009)CrossRefGoogle Scholar
  7. J. Gong, R. Jaiswal, J.M. Mathys, V. Combes, G.E.R. Grau, M. Bebawy, Cancer Treat. Rev. 38, 226 (2012)CrossRefGoogle Scholar
  8. K. Haraguchi, T. Takehisa, M. Ebato, Biomacromolecules 7, 3267 (2006)CrossRefGoogle Scholar
  9. K. Hayashi, M. Zhao, K. Yamauchi, N. Yamamoto, H. Tsuchiya, K. Tomita, R.M. Hoffman, J. Cell. Biochem. 106, 992 (2009)CrossRefGoogle Scholar
  10. K. Knop, R. Hoogenboom, D. Fischer, U.S. Schubert, Angew. Chem. Int. Ed. 49, 6288 (2010)CrossRefGoogle Scholar
  11. M. Kobayashi, P.A. Wood, W.J. Hrushesky, Chronobiol. Int. 19, 237 (2002)CrossRefGoogle Scholar
  12. M. Kokabi, M. Sirousazar, Z.M. Hassan, Eur. Polym. J. 43, 773 (2007)CrossRefGoogle Scholar
  13. R. Krishna, L.D. Mayer, Eur. J. Pharm. Sci. 11, 265 (2000)CrossRefGoogle Scholar
  14. C.T. Lefèvre, A. Bernadac, K. Yu-Zhang, N. Pradel, L. Wu, Environ. Microbiol. 11, 1646 (2009)CrossRefGoogle Scholar
  15. C.C. Lin, K.S. Anseth, Pharm. Res. 26, 631 (2009)CrossRefGoogle Scholar
  16. H. Liu, Y. Zhang, Phys. Fluids 23, 082101 (2011)CrossRefGoogle Scholar
  17. S. Martel, M. Mohammadi, O. Felfoul, Z. Lu, P. Pouponneau, Int. J. Robot. Res. 28, 571 (2009)CrossRefGoogle Scholar
  18. J. Min, V.H. Nguyen, H. Kim, Y. Hong, H. Choy, Nat. Protoc. 3, 629 (2008)CrossRefGoogle Scholar
  19. T. Minamino, K. Imada, K. Namba, Curr. Opin. Struct. Biol. 18, 693 (2008)CrossRefGoogle Scholar
  20. T. Minko, Adv. Drug Deliv. Rev. 56, 491 (2004)CrossRefGoogle Scholar
  21. T. Minko, S.S. Dharap, R.I. Pakunlu, Y. Wang, Curr. Drug Targets 5, 389 (2004)CrossRefGoogle Scholar
  22. C. Nagakura, K. Hayashi, M. Zhao, K. Yamauchi, N. Yamamoto, H. Tsuchiya, K. Tomita, M. Bouvet, R.M. Hoffman, Anticancer. Res. 29, 1873 (2009)Google Scholar
  23. I.K. Nelson, I.K. Kaliakatsos, J.J. Abbott, Annu. Rev. Biomed. Eng. 12, 55 (2010)CrossRefGoogle Scholar
  24. B.J. Nguyen, J.L. West, Biomaterials 23, 4307 (2002)CrossRefGoogle Scholar
  25. S. Park, H. Bae, J. Kim, B. Lim, J. Park, S. Park, Lab Chip 10, 1706 (2010)CrossRefGoogle Scholar
  26. C. Pawashe, S. Floyd, M. Sitti, Int. J. Robot. Res. (Invited paper, Abstract only) (2009)Google Scholar
  27. J.M. Pawelek, K.B. Low, D. Bermudes, Bacteria as tumour-targeting vectors. Lancet Oncol. 4, 548 (2003)CrossRefGoogle Scholar
  28. J. Platt, S. Sodi, M. Kelley, S. Rockwell, D. Bermudes, K.B. Row, J. Pawelek, Eur. J. Cancer 36, 2397 (2000)CrossRefGoogle Scholar
  29. A.A.G. Requicha, IEEE Spec Issue Nanoelectonics Nanoprocessing 91, 1922 (2003)Google Scholar
  30. M. Rhee, P.M. Valencia, M.I. Rodriguez, R. Langer, O.C. Farokhzad, R. Karnik, Adv. Mater. 23, H79 (2011)CrossRefGoogle Scholar
  31. R.W. Ross, E.J. Small, J. Urol. 167, 1952 (2002)CrossRefGoogle Scholar
  32. R.M. Ryan, J. Green, C.E. Lewis, Bioessays 28, 84 (2006)CrossRefGoogle Scholar
  33. G.H.W. Sanders, A. Manz, Trends Anal. Chem. 19, 364 (2000)CrossRefGoogle Scholar
  34. J. Sehouli, D. Stengel, D. Elling, O. Ortmann, J. Blohmer, H. Riess, W. Lichtenegger, Gynecol. Oncol. 85, 321 (2002)CrossRefGoogle Scholar
  35. N.N. Sharma, R.K. Mittal, Int. J. Smart Sens. Intell. Syst. 1, 87 (2008)zbMATHGoogle Scholar
  36. M. Sitti, Nature 458, 1121 (2009)CrossRefGoogle Scholar
  37. E. Steager, C.B. Kim, J. Patel, S. Bith, C. Naik, L. Reber, M.J. Kim, Appl. Phys. Lett. 90, 263901 (2007)CrossRefGoogle Scholar
  38. T. Ward, M. Faivre, M. Abkarian, H.A. Stone, Electrophoresis 26, 3716 (2005)CrossRefGoogle Scholar
  39. C.H. Yeh, Y.C. Lin, Microfluid. Nanofluid. 6, 277 (2009)CrossRefGoogle Scholar
  40. Y.A. Yu, S. Shabahang, T.M. Timiryasova, Q. Zhang, R. Beltz, I. Gentschev, W. Goebel, A.A. Szalay, Nat. Biotechnol. 22, 313 (2004)CrossRefGoogle Scholar
  41. L. Zhang, J.J. Abbott, L. Dong, B.E. Kratochvil, D. Bell, B.J. Nelson, Appl. Phys. Lett. 94, 064107 (2009)CrossRefGoogle Scholar
  42. M. Zhao, J. Geller, H. Ma, M. Yang, S. Penman, R.M. Hoffman, Proc. Natl. Acad. Sci. U. S. A. 104, 10170 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Mechanical Systems EngineeringChonnam National UniversityGwangjuKorea

Personalised recommendations