Biomedical Microdevices

, Volume 14, Issue 6, pp 1009–1017 | Cite as

Chemotactic steering of bacteria propelled microbeads

  • Dongwook Kim
  • Albert Liu
  • Eric Diller
  • Metin SittiEmail author


Flagellated bacteria have been embraced by the micro-robotics community as a highly efficient microscale actuation method, capable of converting chemical energy into mechanical actuation for microsystems that require a small payload and high rate of actuation. Along with being highly motile, Serratia marcescens (S. marcescens), our bacterium species of interest, is a highly agile biomotor capable of being steered via chemotaxis. In this paper, we attached S. marcescens bacteria to polystyrene microbeads towards creating biohybrid that can propel themselves towards an attractive chemical source. Using a three-channel microfluidic device, linear chemical gradients are generated to compare the behavior of bacteria-propelled beads in the presence and absence of a chemoattractant, L-aspartate. We tested and compared the behavior of three different bacteria-attached bead sizes (5, 10 and 20 μm diameter) using a visual particle-tracking algorithm, and noted their behavioral differences. The results indicate that in the presence of a chemoattractant, the S. marcescens-attached polystyrene beads exhibit a clear indication of directionality and steering control through the coordination of the bacteria present on each bead. This directionality is observed in all bead size cases, suggesting potential for targeted payload delivery using such a biohybrid micro-robotic approach.


S. marcescens Micro-robotics Chemotaxis Bacterial propulsion 



The authors of this paper would like to thank the members of the NanoRobotics Laboratory at Carnegie Mellon University for their help and discussions. We would also like to thank Joseph Suhan of Carnegie Mellon University for help in SEM imaging. This work was supported by the NSF CPS-Medium project (CNS-1135850).

Supplementary material


(MP4 2885 kb)


  1. J. Adler, B. Templeton, J. Gen. Microbiol. 46, 175 (1967)CrossRefGoogle Scholar
  2. T. Ahmed, T.S. Shimizu, R. Stocker, Nano. Lett. 10, 3379 (2010)CrossRefGoogle Scholar
  3. V. Arabagi, B. Behkam, M. Sitti, J. Appl. Phys. 109, 114702 (2011)CrossRefGoogle Scholar
  4. B. Behkam, M. Sitti, Appl. Phys. Lett. 93, 223901 (2008)CrossRefGoogle Scholar
  5. B. Behkam, M. Sitti, Appl. Phys. Lett. 90, 023902 (2007)CrossRefGoogle Scholar
  6. B. Behkam and M. Sitti, Proc. IEEE Int. Conf. Robot., 1022 (2009)Google Scholar
  7. B. Behkam and M. Sitti, Proc. IEEE-RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 753 (2008)Google Scholar
  8. S.-Y. Cheng, S. Heilman, M. Wasserman, S. Archer, M.L. Shulerac, M. Wu, Lab on a Chip 7(763) (2007)Google Scholar
  9. N. Darnton, L. Turner, K. Breuer, H.C. Berg, Biophys. J. 86, 1863 (2004)CrossRefGoogle Scholar
  10. E. Diller, S. Floyd, C. Pawashe, M. Sitti, IEEE Trans. on Robotics 28, 172 (2012a)Google Scholar
  11. E. Diller, S. Miyashita, M. Sitti, RSC Advances 2, 3850 (2012b)Google Scholar
  12. E. Diller, C. Pawashe, S. Floyd, M. Sitti, Int. J. Robot. Res. 30, 1667 (2011)Google Scholar
  13. B. Donald, C. Levey, C. McGray, I. Paprotny, D. Russ, J. Microelectromech. S. 15 (2006)Google Scholar
  14. S. Floyd, E. Diller, C. Pawashe, M. Sitti, Int. J. Robot. Res. 30, 1553 (2011)Google Scholar
  15. A.J. Goldman, R.G. Cox, H. Brenner, Chem. Eng. Sci. 22(4), 653 (1967)CrossRefGoogle Scholar
  16. J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 0481021 (2007)CrossRefGoogle Scholar
  17. D. Kim, A. Liu, and M. Sitti, Proc. IEEE/RSJ Int. Conf. Robots and Intelligent Systems, 1674 (2011)Google Scholar
  18. D.H. Kim, E.B. Steager, U.K. Cheang, D. Byun, M.J. Kim, J. Micromech. Microeng. 20, 065006 (2010)CrossRefGoogle Scholar
  19. M. Kim, K. Breuer, J. Fluid Eng. – T. ASME 129, 319 (2007)CrossRefGoogle Scholar
  20. R.D. Leonardo, L. Angelani, D. Dell’Arciprete, G. Ruocco, V. Iebba, S. Schippa, M.P. Conte, F. Mecarini, F.D. Angelis, E.D. Fabrizio, P. Natl. Acad. Sci. USA 107, 9541 (2010)CrossRefGoogle Scholar
  21. S. Martel, M. Mohammadi, O. Felfoul, Z. Lu, P. Pouponneau, Int. J. Robot. Res. 28, 571 (2009)CrossRefGoogle Scholar
  22. S. Park, P. Wolanin, E. Yuzbashyan, H.N. Darnton, J. Stock, P. Silberzan, R. Austin, P. Natl. Acad. Sci. USA 100, 13910 (2003)CrossRefGoogle Scholar
  23. C. Pawashe, S. Floyd, E. Diller, M. Sitti, IEEE Trans. on Robotics 28, 467 (2012)Google Scholar
  24. C. Pawashe, S. Floyd, M. Sitti, Int. J. Robot. Res. 28, 1077 (2009)CrossRefGoogle Scholar
  25. M. Sitti, Nature 458, 1121 (2009)CrossRefGoogle Scholar
  26. A. Sokolov, I. Aranson, J. Kessler, R. Goldstein, Phys. Rev. Lett. 98, 1581021 (2007)CrossRefGoogle Scholar
  27. E. Steager, C. Kim, J. Patel, S. Bith, C. Naik, L. Reber, M.J. Kim, Appl. Phys. Lett. 90, 263901 (2007)CrossRefGoogle Scholar
  28. D.B. Weibel, P. Garstecki, D. Ryan, W.R. DiLuzio, M. Mayer, J.E. Seto, G.M. Whitesides, P. Natl. Acad. Sci. USA 102, 11963 (2005)CrossRefGoogle Scholar
  29. K. Yesin, K. Vollmers, B. Nelson, Int. J. Robot. Res. 25, 527 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Dongwook Kim
    • 1
  • Albert Liu
    • 2
  • Eric Diller
    • 1
  • Metin Sitti
    • 3
    Email author
  1. 1.Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of Mechanical Engineering and Robotics InstituteCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations