Biomedical Microdevices

, Volume 15, Issue 1, pp 117–123 | Cite as

Microactuator device for integrated measurement of epithelium mechanics

  • Vikram Mukundan
  • W. James Nelson
  • Beth L. Pruitt
Article

Abstract

Mechanical forces are among important factors that drive cellular function and organization. We present a microfabricated device with on-chip actuation for mechanical testing of single cells. An integrated immersible electrostatic actuator system is demonstrated that applies calibrated forces to cells. We conduct stretching experiments by directly applying forces to epithelial cells adhered to device surfaces functionalized with collagen. We measure mechanical properties including stiffness, hysteresis and visco-elasticity of adherent cells.

Keywords

Electrostatic actuator Force measurement Epithelium Cell mechanics 

Notes

Acknowledgements

This work is supported by NSF CAREER award ECS0449499, NIH R01EB006745-01A1 and NSF EFRI (MIKS-1136790). Fabrication was done at the Stanford Nanofabrication Facility, which is supported by NSF under grant ECS 9731293. VM was supported by the Stanford Graduate Fellowship. WJN is supported by National Institutes of Health grant GM35527.

References

  1. D. Mizuno, C. Tardin, C.F. Schmidt, F.C. MacKintosh, Nonequilibrium mechanics of active cytoskeletal networks. Science 315(5810), 370–373 (2007)CrossRefGoogle Scholar
  2. D.E. Ingber, Mechanobiology and diseases of mechanotransduction. Ann. Med. 35(8), 564–577 (2003)CrossRefGoogle Scholar
  3. S. Suresh, J. Spatz, J.P. Mills, A. Micoulet, M. Dao, C.T. Lim, M. Beil, T. Seufferlein, Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1(1), 15–30 (2005)CrossRefGoogle Scholar
  4. R.M. Hocumuth, Micropipette aspiration of living cells. J. Biomech. 33(1), 15–22 (2000)CrossRefGoogle Scholar
  5. M. Frisen, M. Magi, L. Sonnerup, A. Viidik, Rheological analysis of soft collagenous tissue. part ii: experimental evaluations and verifications. J. Biomech. 2(1), 21–8 (1969)CrossRefGoogle Scholar
  6. P.A. Janmey, D.A. Weitz, Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem. Sci. 29(7), 364–370 (2004)CrossRefGoogle Scholar
  7. N. Wang, J.P. Butler, D.E. Ingber, Mechanotransduction across cell surface through cytoskeleton. Science 260(5111), 1124–1127 (1993)CrossRefGoogle Scholar
  8. R.E. Mahaffy, S. Park, E. Gerde, J. Ka, C.K. Shih, Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys. J. 86, 1777–17793 (2004)CrossRefGoogle Scholar
  9. M.T.A. Saif, C.R. Sager, S. Coyer, Functionalized biomicroelectromechanical systems sensors for force response study at local adhesion sites of single livling cells on substrates. Ann. Biomed. Eng. 31, 950–961 (2003)CrossRefGoogle Scholar
  10. J. Rajagopalan, A. Tofangchi, M.T.A. Saif, Drosophila neurons actively regulate axonal tension in vivo. Biophys. J. 99(10), 3208–3215 (2010)CrossRefGoogle Scholar
  11. O. Thoumine, A. Ott, Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J. Cell Sci. 110(17), 2109–2116 (1997)Google Scholar
  12. A. Micoulet, J.P. Spatz, A. Ott, Mechanical response analysis and power generation by single-cell stretching. ChemPhysChem 6(4), 663–670 (2005)CrossRefGoogle Scholar
  13. N. Desprat, A. Richert, J. Simeon, A. Asnacios, Creep function of a single living cell. Biophys. J. 88(3), 2224–2233 (2005)CrossRefGoogle Scholar
  14. G. Bao, S. Suresh, Cell and molecular mechanics of biological materials. Nat. Mater. 2, 715–725 (2003)CrossRefGoogle Scholar
  15. K.J.V. Vliet, G. Bao, S. Suresh, The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Mater. 51, 5881–5905 (2003)CrossRefGoogle Scholar
  16. O. Loh, A. Vaziri, H. Espinosa, The potential of MEMS for advancing experiments and modeling in cell mechanics. Exp. Mech. 49(1), 105–124 (2009)CrossRefGoogle Scholar
  17. J. Rajagopalan, M.T.A. Saif, MEMS sensors and microsystems for cell mechanobiology. J. Micromechanics Microengineering 21(5), 054002 (2011)CrossRefGoogle Scholar
  18. D.B. Serrell, T.L. Oreskovic, A.J. Slifka, R.L. Mahajan, D.S. Finch, A uniaxial biomems device for quantitative force-displacement measurements. Biomed. Microdevices 9(2), 267–275 (2007)CrossRefGoogle Scholar
  19. D.B. Serrell, J. Law, A.J. Slifka, R.L. Mahajan, D.S. Finch, A uniaxial biomems device for imaging single cell response during quantitative force-displacement measurements. Biomed. Microdevices 10(6), 883–889 (2008)CrossRefGoogle Scholar
  20. M.E. Chicurel, C.S. Chen, D.E. Ingber, Cellular control lies in the balance of forces. Curr. Opin. Cell Biol. 10, 232–239 (1998)CrossRefGoogle Scholar
  21. N.Q. Balaban, U.S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, B. Geiger, Force and focal adhesion assebly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3, 466–427 (2001)CrossRefGoogle Scholar
  22. N. Chronis, L.P. Lee, Electrothermally activated su-8 microgripper for single cell manipulation in solution. J. Microeletromech. Sys. 14(4), 857–863 (2005)CrossRefGoogle Scholar
  23. Y. Sun, K.-T. Wan, K.P. Roberts, J.C. Bischof, B.J. Nelson, Mechanical property characterization of mouse zona pellucida. IEEE Trans. NanoBioSci. 2(4), 279–286 (2003)CrossRefGoogle Scholar
  24. Y. Sun, B. Nelson, M.A. Greminger, Investigating protein structure change in the zona pellucida with a microrobotic system. Int. J. Rob. Res. 24(2–3), 211–208 (2004)Google Scholar
  25. T.L. Sounart, T.A. Michalske, K.R. Zavadil, Frequency-dependent electrostatic actuation in microfluidic mems. J. Microeletromech. Sys. 14(1), 125–133 (2005)CrossRefGoogle Scholar
  26. V. Mukundan, B.L. Pruitt, Mems electrostatic actuation in conducting biological media. J. Microeletromech. Sys. 18(2), 405–413 (2009)CrossRefGoogle Scholar
  27. C. Brunner, A. Niendorf, J.A. Kas, Passive and active single-cell biomechanics: a new perspective in cancer diagnosis. Soft Matter 5, 2171–2178 (2009)CrossRefGoogle Scholar
  28. V. Mukundan, P. Ponce, H.E. Butterfield, B.L. Pruitt, Modeling and characterization of electrostatic comb-drive actuators in conducting liquid media. J. Micromechanics Microengineering 19(065008), 9 (2009)Google Scholar
  29. R. Legtenberg, A.W. Groeneveld, M. Elwenspoek, Comb-drive actuators for large displacements. J. Micromechanics Microengineering 6, 320–329 (1996)CrossRefGoogle Scholar
  30. N.A. Burnham, X. Chen, C.S. Hodges, G.A. Matei, E.J. Thoreson, C.J. Roberts, M.C. Davies, S.J.B. Tendler, Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 14, 1–6 (2003)CrossRefGoogle Scholar
  31. P. Fernandez, A. Ott, Single cell mechanics: stress stiffening and kinematic hardening. Phys. Rev. Lett. 100(23), 238102 (2008)CrossRefGoogle Scholar
  32. Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1993)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Vikram Mukundan
    • 1
    • 3
  • W. James Nelson
    • 2
  • Beth L. Pruitt
    • 1
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of BiologyStanford UniversityStanfordUSA
  3. 3.Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany

Personalised recommendations