Biomedical Microdevices

, Volume 15, Issue 1, pp 109–115 | Cite as

A contactless electrical stimulator: application to fabricate functional skeletal muscle tissue

  • Samad Ahadian
  • Javier Ramón-Azcón
  • Serge Ostrovidov
  • Gulden Camci-Unal
  • Hirokazu Kaji
  • Kosuke Ino
  • Hitoshi Shiku
  • Ali KhademhosseiniEmail author
  • Tomokazu MatsueEmail author


Engineered skeletal muscle tissues are ideal candidates for applications in drug screening systems, bio-actuators, and as implantable constructs in tissue engineering. Electrical field stimulation considerably improves the differentiation of muscle cells to muscle myofibers. Currently used electrical stimulators often use direct contact of electrodes with tissue constructs or their culture medium, which may cause hydrolysis of the culture medium, joule heating of the medium, contamination of the culture medium due to products of electrodes corrosion, and surface fouling of electrodes. Here, we used an interdigitated array of electrodes combined with an isolator coverslip as a contactless platform to electrically stimulate engineered muscle tissue, which eliminates the aforementioned problems. The effective stimulation of muscle myofibers using this device was demonstrated in terms of contractile activity and higher maturation as compared to muscle tissues without applying the electrical field. Due to the wide array of potential applications of electrical stimulation to two- and three-dimensional (2D and 3D) cell and tissue constructs, this device could be of great interest for a variety of biological applications as a tool to create noninvasive, safe, and highly reproducible electric fields.


Skeletal muscle tissue engineering Contactless electrical stimulation C2C12 myoblasts Gelatin methacrylate (GelMA) hydrogel 



S.A. conceived the idea. S.A. and J.R. designed the research. S.A., J.R., H.K., H.S., A.K., and T.M. analyzed the results. S.A. wrote the paper. G.C-U. synthesized the GelMA hydrogel. S.A. and J.R. performed all other experiments. H.K., H.S., A.K., and T.M. supervised the research. All authors read the manuscript, commented on it, and approved its content. This work was supported by the World Premier International Research Center Initiative (WPI), MEXT, Japan.

Supplementary material

10544_2012_9692_MOESM1_ESM.doc (43 kb)
ESM 1 (DOC 43 kb)

(WMV 17786 kb)


  1. C. Adam, Endogenous musculoskeletal tissue engineering - a focused perspective. Cell Tissue Res. 347, 489–499 (2012)CrossRefGoogle Scholar
  2. S. Ahadian, J. Ramón-Azcón, S. Ostrovidov, G. Camci-Unal, V. Hosseini, H. Kaji, K. Ino, H. Shiku, A. Khademhosseini, T. Matsue, Interdigitated array of Pt electrodes as a new platform for the electrical stimulation of engineered muscle tissue. Lab Chip. 12, 3494–3503 (2012)Google Scholar
  3. S. Arber, G. Halder, P. Caroni, Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell 79, 221–231 (1994)CrossRefGoogle Scholar
  4. H. Aubin, J.W. Nichol, C.B. Hutson, H. Bae, A.L. Sieminski, D.M. Cropek, P. Akhyari, A. Khademhosseini, Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 31, 6941–6951 (2010)CrossRefGoogle Scholar
  5. D. Berdat, A.C. Martin Rodriguez, F. Herrera, M.A.M. Gijs, Label-free detection of DNA with interdigitated micro-electrodes in a fluidic cell. Lab Chip 8, 302–308 (2008)CrossRefGoogle Scholar
  6. W. Bian, M. Juhas, T.W. Pfeiler, N. Bursac, Local tissue geometry determines contractile force generation of engineered muscle networks. Tissue Eng. Part A. 18, 957–967 (2011)CrossRefGoogle Scholar
  7. P. Clark, G.A. Dunn, A. Knibbs, M. Peckham, Alignment of myoblasts on ultrafine gratings inhibits fusion in vitro. Int. J. Biochem. Cell Biol. 34, 816–825 (2002)CrossRefGoogle Scholar
  8. H. Fujita, T. Van Dau, K. Shimizu, R. Hatsuda, S. Sugiyama, E. Nagamori, Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator. Biomed. Microdevices 13, 123–129 (2011)CrossRefGoogle Scholar
  9. A.M. Ghaemmaghami, M.J. Hancock, H. Harrington, H. Kaji, A. Khademhosseini, Biomimetic tissues on a chip for drug discovery. Drug Discov. Today 17, 173–181 (2012)CrossRefGoogle Scholar
  10. D.B. Hibbert, K. Weitzner, B. Tabor, P. Carter, Mass changes and dissolution of platinum during electrical stimulation in artificial perilymph solution. Biomaterials 21, 2177–2182 (2000)CrossRefGoogle Scholar
  11. S. Hinds, W. Bian, R.G. Dennis, N. Bursac, The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle. Biomaterials 32, 3575–3583 (2011)CrossRefGoogle Scholar
  12. V. Hosseini, S. Ahadian, S. Ostrovidov, G. Camci-Unal, S. Chen, H. Kaji, M. Ramalingam, A. Khademhosseini, Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate. Tissue Eng. Part A. (2012)Google Scholar
  13. M. Hronik-Tupaj, D.L. Kaplan, A review of the responses of two- and three-dimensional engineered tissues to electric fields. Tissue Eng. Part B: Rev. 18, 167–180 (2012)CrossRefGoogle Scholar
  14. H. Kaji, T. Ishibashi, K. Nagamine, M. Kanzaki, M. Nishizawa, Electrically induced contraction of C2C12 myotubes cultured on a porous membrane-based substrate with muscle tissue-like stiffness. Biomaterials 31, 6981–6986 (2010)CrossRefGoogle Scholar
  15. A. Khademhosseini, R. Langer, J. Borenstein, J.P. Vacanti, Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U. S. A. 103, 2480–2487 (2006)CrossRefGoogle Scholar
  16. M. Koning, M.C. Harmsen, M.J.A. van Luyn, P.M.N. Werker, Current opportunities and challenges in skeletal muscle tissue engineering. J. Tissue Eng. Regen. Med. 3, 407–415 (2009)CrossRefGoogle Scholar
  17. S. Musa, D.R. Rand, C. Bartic, W. Eberle, B. Nuttin, G. Borghs, Coulometric detection of irreversible electrochemical reactions occurring at Pt microelectrodes used for neural stimulation. Anal. Chem. 83, 4012–4022 (2011)CrossRefGoogle Scholar
  18. K. Nagamine, T. Kawashima, T. Ishibashi, H. Kaji, M. Kanzaki, M. Nishizawa, Micropatterning contractile C2C12 myotubes embedded in a fibrin gel. Biotechnol. Bioengin. 105, 1161–1167 (2010)Google Scholar
  19. K. Nagamine, T. Kawashima, S. Sekine, Y. Ido, M. Kanzaki, M. Nishizawa, Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab Chip 11, 513–517 (2011)CrossRefGoogle Scholar
  20. T. Nedachi, H. Fujita, M. Kanzaki, Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle. Am. J. Physiol.-Endocrinol. Metab. 295, E1191–E1204 (2008)CrossRefGoogle Scholar
  21. M. Nishizawa, H. Nozaki, H. Kaji, T. Kitazume, N. Kobayashi, T. Ishibashi, T. Abe, Electrodeposition of anchored polypyrrole film on microelectrodes and stimulation of cultured cardiac myocytes. Biomaterials 28, 1480–1485 (2008)CrossRefGoogle Scholar
  22. H. Park, R. Bhalla, R. Saigal, Effects of electrical stimulation in C2C12 muscle constructs. J. Tissue Eng. Regen. Med. 2, 279–287 (2008)CrossRefGoogle Scholar
  23. K. Park, H.-J. Suk, D. Akin, R. Bashir, Dielectrophoresis-based cell manipulation using electrodes on a reusable printed circuit board. Lab Chip 9, 2224–2229 (2009)CrossRefGoogle Scholar
  24. N.A. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer, Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006)CrossRefGoogle Scholar
  25. J. Ramón-Azcón, S. Ahadian, R. Obregon, G. Camci-Unal, S. Ostrovidov, V. Hosseini, H. Kaji, K. Ino, H. Shiku, A. Khademhosseini, T. Matsue, Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells. Lab Chip 12, 2959–2969 (2012)CrossRefGoogle Scholar
  26. S.A. Riboldi, M. Sampaolesi, P. Neuenschwander, G. Cossu, S. Mantero, Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering. Biomaterials 26, 4606–4615 (2005)CrossRefGoogle Scholar
  27. C.A. Rossi, M. Pozzobon, P. De Coppi, Advances in musculoskeletal tissue engineering: moving towards therapy. Organogenesis 6, 167–172 (2010)CrossRefGoogle Scholar
  28. H. Shafiee, J. Caldwell, M. Sano, R. Davalos, Contactless dielectrophoresis: a new technique for cell manipulation. Biomed. Microdevices 11, 997–1006 (2009)CrossRefGoogle Scholar
  29. H. Shafiee, M.B. Sano, E.A. Henslee, J.L. Caldwell, R.V. Davalos, Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab Chip 10, 438–445 (2010)CrossRefGoogle Scholar
  30. B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, N.A. Peppas, Hydrogels in regenerative medicine. Adv. Mater. 21, 3307–3329 (2009)CrossRefGoogle Scholar
  31. H. Vandenburgh, High-content drug screening with engineered musculoskeletal tissues. Tissue Eng. Part B: Rev. 16, 55–64 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Samad Ahadian
    • 1
  • Javier Ramón-Azcón
    • 1
  • Serge Ostrovidov
    • 1
  • Gulden Camci-Unal
    • 2
    • 3
  • Hirokazu Kaji
    • 4
  • Kosuke Ino
    • 5
  • Hitoshi Shiku
    • 5
  • Ali Khademhosseini
    • 1
    • 2
    • 3
    • 6
    • 7
    Email author
  • Tomokazu Matsue
    • 1
    • 5
    Email author
  1. 1.WPI-Advanced Institute for Materials ResearchTohoku UniversitySendaiJapan
  2. 2.Department of Medicine, Center for Biomedical Engineering, Brigham and Women’s HospitalHarvard Medical SchoolCambridgeUSA
  3. 3.Harvard–MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of Bioengineering and Robotics, Graduate School of EngineeringTohoku UniversitySendaiJapan
  5. 5.Graduate School of Environmental StudiesTohoku UniversitySendaiJapan
  6. 6.Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonUSA
  7. 7.Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of DentistryKyung Hee UniversitySeoulRepublic of Korea

Personalised recommendations